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Abstract�

We give a formal proof that if f is a smooth dynamics on a d�dimensional

smooth manifold and � is an ergodic and exact dimensional measure with Haus�

dor� dimension dim � � d � �� then the number d of degrees of freedom of the

dynamics can be recovered from the observation of an orbit� We implement� with

this purpose� an algorithm based on the analysis of the microstructure of �� We

show how a correct estimation of d permits the computation of the Liapunov

spectrum with a high accuracy avoiding the issue of the spurious exponents�
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�� Introduction

The phenomenon of chaos renders hopeless the exact prediction of the behaviour

of some dynamical systems� It is natural in these cases to take advantage of the

statistic regularity inherent in chaotic dynamics� A non�trivial problem is to de�

termine under which conditions the main properties of an observed dynamics can

be recovered from a single orbit� A limit cycle attractor in the plane provides

an elementary example of a situation where the orbits of the system collapse in

very few steps into a one�dimensional manifold M� making impossible the com�

putation� for instance� of the Liapunov spectrum� One only can estimate� from

the data points� the action of the tangent maps on the bundle of one�dimensional

tangent spaces associated to M� from which only one Liapunov exponent can be

computed� Notice that in the above example� we cannot recover either the num�

ber of state variables of the dynamics from the observation of a single orbit of the

system�

As we see below� the numerical estimation of the number of degrees of freedom

of an observed dynamics in presence of strongly negative Liapunov exponents also

presents a special di�culty�

	



The above considerations raise the problem of stating under which conditions

the main properties of a dynamics 
M�f� �� where

�������������������

M is a d�dimensional smooth submanifold

f � M �M is a measurable dynamics

� is an ergodic measure for f


����

can be computed from a single orbit of the system�

In this paper we show that if � is ��exact dimensional with � � d��� and f and

M are su�ciently smooth� then we can recover the number d of degrees of freedom

of the dynamics from the observation of an orbit of the system�We implement an

algorithm with this purpose� and show how the estimate of d that it gives may be

used in the computation of the Liapunov spectrum of the dynamics�

A measure � is said to be ��exact dimensional if

lim
r��

log �
B
x� r��

log r

 � ��a�e� x �M�

This notion was introduced by L�S� Young in ��� where it is proved that� if �

is ��exact dimensional� then many notions of dimension of �� and in particular

the Hausdor� dimension dim �� coincide with �� Exact dimensional measures play

nowadays a central role in Dynamical Systems� Barreira� Pesin and Schemiling

�	� have recently proved the conjecture of Eckmann and Ruelle ��� that hyperbolic

�



measures invariant under a C��� di�eomorphism are exact dimensional�

In regard to the second condition � � d��� it seems to be a natural condition

which ensures that the dynamics does not take place in a submanifold of dimension

smaller than d� and it is satis�ed by many standard dynamical systems�

Mera and Mor�an ��� showed that the same above conditions that permit the

computation of d permit also the computation of the whole Liapunov spectrum

of ��

In Section 	 we describe the algorithm for the estimation of the number of

degrees of freedom of a dynamics from a scalar time series fu�� u�� ���� uN��g ob�

tained from the observation of an orbit of f� i�e�� ui 
 h
f i
z��� where z �M and

h is a smooth unknown observable� The algorithm is based on the well known

principal components analysis of the distribution of the data points in the space

of m�histories� If� for increasing values of m� the estimate of the dimension of the

embedded submanifold becomes stabilized to a value D� this will be our estimate

of the dimension d of the submanifold where the original dynamics is de�ned�

If the algorithm always gives m as output then two alternative hypotheses are

possible� either the series is generated by a stochastic law� or it is a projection of

a higher dimensional dynamics in a lower dimensional space� In both cases the

hypothesis of low dimensional chaos can be rejected and it does not make sense

to compute the Liapunov spectrum� We give empirical evidence on the e�ciency
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of this algorithm for the detection of stochastic noise� This is the most likely

alternative when analysing� for instance� �nancial markets data and� in general�

social science data where� if there exists a deterministic component� it is expected

to be hidden by a strong stochastic component� Techniques of noise reduction

could be useful in these cases� We give also empirical evidence on the e�ciency

of the algorithm for the estimation of the number d of degrees of freedom of a low

dimensional dynamics� The presence of low dimensional determinism has been

extensively documented in the literature for the case of controlled experimental

data and� more exceptionally� in some uncontrolled experimental data� In these

cases a right estimation of d is a most important step for further analysis of the

data�

The estimation of the number d of degrees of freedom of a smooth dynamics

on a d�dimensional submanifold is specially reliable for dynamics whose Liapunov

dimension ��� � is larger than d � � with � � d � � large enough� We also show

that� for large time series� it is possible� in principle� to detect hidden dimensions

linked to strongly negative Liapunov exponents� in which case � � d � � is very

small�

Section � is devoted to the proof of the theorem which gives a theoretical

support to the algorithm proposed in Section 	� Finally� we show in Section �

how to take advantage of the principal component analysis for the computation
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of the Liapunov exponents of a dynamics� We show how a correct estimation of

the dimension d of the submanifold where the dynamics is de�ned may be crucial

for a correct computation of the Liapunov exponents�

�� Algorithm for the estimation of the number of degrees

of freedom of an observed dynamics�

We start assuming that 
M�f� �� satisfy the regularity conditions in 
����� in

particular we assume that f is a C��� mapping and M is a C��� submanifold�

Let fu�� u�� ���� uN��g be a scalar time series obtained from a observation of the

dynamics� i�e� ui 
 h
f i
z�� where z �M and h is an unknown smooth observable�

We �rst use the method of local dimension analysis to determine the most likely

value of d� Let O
�m�
N �
 fxi� i 
 �� ���� N �mg be a m�dimensional embedding ���

of the time series� i�e�

xi �
 
ui� ui��� ���� ui�m����

Takens ��� proved that if M is compact� and m � 	d� then generically O
�m�
N is

contained in a d�dimensional submanifold Jm
M� of Rm� where Jm is an embed�

ding di�eomorphism� The same conclusion holds in the sense of prevalence under

additional conditions on the dynamics ����

The method of local dimension explores the local structure of the empiri�
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cal measure of the orbit in small balls centered at points of O
�m�
N � If Jm
M�

is a d�dimensional submanifold then� in small balls� the points of O
�m�
N admit

a good approximation by a d�dimensional linear subspace� The search of the

k�dimensional linear subspace which best �ts the data points is made through

either principal component analysis or singular value analysis� For xi � O
�m�
N we

denote by Vr the matrix which has as rows the vectors xj � xi� for the points xj

of O�m�
N in the closed ball B
xi� r� centered at xi and with radius r� It is known

��� that the k�dimensional linear subspace Tk�r� k � m� which best �ts these data�

in the sense that it minimizes the sum of Euclidean distances between the vec�

tors xj � xi� xj � O
�m�
N � B
xi� r�� and the subspace Tk�r� is the linear subspace

spanned by the k eigenvectors corresponding to the k largest eigenvalues of the

matrix Xr �
 �
N�m�� 
Vr�

t
Vr� If we denote these eigenvalues arranged in a de�

creasing ordering by �r�j� j 
 �� ����m� then the mean square error made by Tk�r

is Er�k �

Pm

j�k�� �r�j�

Our method determines the dimension d by studying the behaviour of the

normalized error bEr�k �

Er�kPm

j��
�r�j

as a joint function of r and k� We prove in

Section � that if � is an exact dimensional measure with dim� � d� � and f and

M are C���� then for k � d the normalized error bEr�k scales as r��� and for k � d it

goes to zero more slowly than ra for any a � �� This result gives a necessary and

su�cient condition for the dimension of M to be equal to d� To get a statistically
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robust estimation of the value of d we average the values of bEr�k over the points

of the orbit� and we show that these averages behave as bEr�k�

The idea of studying the errors Er�k for r �xed and di�erent values of k was

�rst proposed by Froehling et al�
see ����� Broomhead et al� and R�E� Pike 
see

���� and ����� study the scaling law of the singular values sr�j �

p
�r�j� j 
 �� ����m

of the matrix Vr as functions of r� instead of studying the errors Er�k� They gave

an heuristic argument to show that if O
�m�
N is contained in a smooth d�dimensional

submanifold of Rm and � is absolutely continuous w�r�t� the Lebesgue measure�

then the �rst d singular values� after a normalization dividing by the square root

of the number of points of the orbit in B
xi� r�� should take approximately equal

values and they scale as r� whilst the last m� d normalized singular values scale

as r��

Invariant measures for a chaotic dynamics are known to display frequently

geometric complexity� They often are highly anisotropic� typically supported on

a fractal set� We will show in Section � experiments for which� in agreement with

the anisotropy typical of the invariant measures� the power of the signal is not

equidistributed among the �rst d singular values�

Moreover� in the case of a chaotic dynamics� the analysis of the individual

behaviour of each singular value is not su�cient to determine the number d of

degrees of freedom of the dynamics� It only can give a lower bound for d� We
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show below that� in order to obtain the upper bound for d� the behaviour of the

normalized errors bEr�k� which aggregate the values of the m � k last principal

components� must be considered�

The method of principal components has been used in the literature for other

related purposes as 
�� to obtain optimum global coordinates� i�e� the dimension

of the subspace containing the embedded manifold and not the dimension of the

manifold itself ��	�� 
	� the estimation of a working dimension� i�e�� a value of m

which ensures that the observed dynamics is correctly reconstructed in the space

of m�histories ����� 
�� the measurement of the noise level ���� or 
�� the estimation

of a local intrinsic 
fractal� dimension of the attractor 
����� ���� and ������

���� Sketch of the theoretical foundation of the algorithm�

We give a sketch of the proof of the theoretical basis of our algorithm� Inter�

ested readers can follow technical details in the next section� We assume that

the hypotheses ��� guaranteeing that O�m�
N is contained in a d�dimensional C���

submanifold Jm
M� hold� where Jm is an embedding C��� di�eomorphism� The

normalized errors bEr�k are� for su�cient large N� natural estimates of

bEr
Tk�r� �


R
B�xi�r�

����y� xi � PTk�r 
y� xi�
���
�

��
d	
y�R

B�xi�r�

jy� xij��� d	
y�

�



where Tk�r is the k�dimensional linear subspace which minimizes� over the set

G
n� k� of k�dimensional linear subspaces� the expression

Er
T� �

Z
B�xi�r�


jy � xi � PT
y� xi�j��� d	
y��

PT is the orthogonal projection on T � G
n� k�� and 	 is the measure induced

by � under the di�eomorphism Jm� Observe that Er
T� measures the L��distance

between the orthogonal projection PT and the identity� The linear subspace Tk�r

spanned by the k eigenvectors corresponding to the k largest eigenvalues of the

matrix Xr is a natural estimate of Tk�r�

We must show that bEr
Tk�r� scale as r�� for any k � d and as O
�� for k � d�

If k � d then Td�r � Tk�r so that Er
Tk�r� � Er
Td�r� � Er
Td� where Td is the

tangent space to the manifold Jm
M� at xi� Since Jm
M� is a d�dimensional C���

submanifold there is a constant K such that

�
jy� xi � PTd
y� xi�j�

�� � K 
jy� xij�������� � Kr�� 
jy� xij���

for any y � B
xi� r� and r su�ciently small� Hence bEr
Tk�r� � bEr
Td� � Kr�� for

su�ciently small r�

The most delicate part of the argument is to show that bEr
T� cannot be O
ra��

a � �� if T is a k�dimensional linear subspace with k � d� In fact to show this
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requires the stronger assumption that � is an exact dimensional measure with

dim� � d � �� Assume on the contrary that there is a k�dimensional linear

subspace T� with k � d� such that bEr
T� � Kra� a � � for small r� Then�

bEr
Td�r� � bEr
Tk�r� � bEr
T� � Kra�

Hence R
B�xi�r�

�����PTk�r � PTd�r
�


y� xi�
���
�

��
d	
y�R

B�xi�r� 
jy� xij��� d	
y�

	���




R
B�xi�r�

����y � xi � PTd�r 
y� xi��
�
y � xi � PTk�r 
y� xi�

����
�

��
d	
y�R

B�xi�r�

jy� xij��� d	
y�

� bEr
Td�r� � bEr
Tk�r� � 	Kra�

for small r� Thus� the normalized L��distance between the orthogonal projections

PTk�r and PTr�d becomes very small for su�cient small r� The key point of the

argument is that if the �rst expression in formula 
	��� goes to zero as O
ra� then

the measure 	 must be concentrated near Tr�k� which is the kernel of PTr�k �PTr�d �

at a speed that implies dim 	 � k� Since dim 	 
 dim� � d � �� this gives the

desired contradiction�

The following example illustrates the di�culties that can arise when analyzing

the local geometry of a measure through the method of principal components� Let

� be the Lebesgue measure on a planar curve in R
�� If we apply the method of
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principal components to compute the bidimensional subspace which best �ts the

measure on a ball centered at a point of the curve� this will be� of course� the plane

� containing the curve� Perturb now slightly this measure� in such way that it

spreads out on a narrow bidimensional ribbon� orthogonal to � and containing the

original curve� If this is suitably done it might occur that the plane which best �ts

the measure in small balls is still the plane �� instead of the tangent plane to the

bidimensional ribbon� If the dimension of the perturbed measure is larger than �

this irregularity can only occur at exceptional points� This illustrates the role of

the hypothesis dim � � d� � when using the method of principal components�

���� The algorithm�

We now see how a test� based in the above ideas� can be numerically implemented�

First of all� we consider the following quantities� which measure the rate of con�

vergence to zero of the average normalized errors
DbEr�k

E
over the points xi of the

orbit


k
r� �

ln


DbEr�k

E
�

ln r



ln
�Pm

j�k��

	
�r�jPm

j��
�r�j


�
ln r

� k 
 �� ����m� �

Notice that 
k
r� has a physical meaning� by Birkho� ergodic theorem ���� it is

�	



the natural estimate� for large N� of

ln
R bEr
Tk�r� d	

ln r
�

We plot the points 
ln r� ln

DbEr�k

E
�� for a wide range of values of r and we

estimate the rate of convergence of the normalized errors to zero as the slope 
k

of such curve� We have seen above that


k 


���������
� if k � d

a � � if k � d

� 
	�	�

The routines for the computation of singular values display a more robust

behaviour� For this reason� the eigenvalues �r�j� j 
 �� ����m are obtained as the

squares of the singular values of the matrices �p
N�m��Vr� Let bsr�j �
 sr��jPm

k��
sr�k

�

j 
 �� �����m the normalized singular values� It is easy to check that if the j�th

average normalized singular value hbsr�ji is constant and positive for a su�cient

large range of small values of r� then 
j�� is null and we get directly d � j from


	�	�� See examples below for the practical implementation of this test�

We have implemented a FORTRAN code to obtain the dimension estimates�

In order to get independence of the results from the scale of measurement� the

original time series is normalized to the interval ��� ��� The entry parameters of the

code are the embedding dimension m and an initial radius rmax� The output of the

��



algorithm are the average normalized singular values hbsri�ji � j 
 �� ����m� and the

pairs of points 
ln ri� ln

DbEr�k

E
��� k 
 �� ����m� �� for ri 
 rmax�	��i�

	�
� � � i � ���

and for the values of i such that there are enough many neighbouring points of

the data points�

Fig� � corresponds to a scalar time series from a sample of a Uniform distri�

bution in ��� ��� Observe that for all the embedding dimensions m� the average

normalized singular values hbsr�ji are positive for any j 
 �� ����m� Then 
k 
 �

for any k 
 �� ����m� �� and 
	�	� gives d � m� This gives an indication of the

stochasticity of the process which generates the time series� Notice that a fast

scarcity of neighbouring points for increasing values of m serves as indication that

the data are not in a d�dimensional submanifold of Rm with d �� m�

The dimensional analysis for a time series from Henon system can be seen

in Fig� 	� Observe that the �rst two average normalized singular values hbsr�ji �
j 
 �� 	 are positive for any m � f�� �� �g� and they take remarkably stable values

at any scale of observation� From this d � 	 follows� Notice that in agreement

with the anisotropy� typical of the invariant measures� the power of the signal is

not equidistributed among the �rst two singular values as asserted in ���� and �����

The third average normalized singular value appears small for any m � f�� �� �g

but we do not know if its rate of convergence to zero is su�ciently small as

to guarantee that d 
 	� For this reason we take m � � 
 	d� where d� is

��



the lower bound for d obtained from the above analysis� and we plot the curves


ln ri� ln

DbEr�k

E
�� for m � 	d� and k � f�� 	g� We can see in Fig� 	
b� that the

slopes of the curves for k 
 � are null whilst they are positive for k 
 	� Thus�

we obtain the estimate d 
 	 for the dimension of the submanifold where the

observed dynamics is de�ned�

The case of Henon system above� perturbed with a gaussian noise of small

power� can be seen in Fig� �� It is possible to observe four strips of singular

values signi�cantly di�erent from zero� The �rst two of them are bigger� and they

correspond to the bidimensional local structure of the unperturbed system� The

third and fourth ones� corresponding to the remaining singular values� can be

identi�ed as due to the noise� since they increase for small radii� This indicates

that the noise eventually dominates the signal at small scales of observation� It is

not possible to know from this analysis whether there exist more small singular

values due to a higher dimensional local structure of the unperturbed system�

since they would be hidden by the noise� Thus we only can assert d � 	� Further

research� based perhaps on noise reduction techniques ���� is needed to complete

the dimensional analysis of noisy attractors�

��



���� Hidden dimensions�

Next we present the case when one or more degrees of freedom of a smooth

dynamics are hidden due to the existence of strongly negative exponents which

cause that the data points at small scales of observation appear as stretched

along the linear span of the spatial directions corresponding to the unstable local

manifold� This happen to occur for instance in Lorenz and R�ossler dynamics

which are three dimensional dynamics with dimension of � close to two� From

a numerical point of view� this produces a very small average normalized error

made by the projections on the bidimensional linear subspaces which best �t the

data points in small balls� Thus� the third average normalized singular value is

small� rendering it di�cult to obtain a clear indication of the existence of the

third dimension from the time series�

We illustrate this fact using Lorenz dynamics 
see Fig� ��� There appear three

strips 
Fig� �
a�� around the approximate values ����� ���� and ���� corresponding

to the averages for the �rst three normalized singular values� Since that corre�

sponding to the second one is around a ���� we can state that the dimension of

the submanifold must be at least two� The third one appears to be small but

it remains positive and constant even for very small radii� Thus� the estimate d

of the dimension of Jm
M� must be at least three for any m � �� We then plot

the curves 
ln ri� ln

DbEr�k

E
�� for m � f�� �g and k � f�� 	� �g� The slopes 
see Fig�

��



�
b�� for k 
 � and k 
 	 are null whilst for k 
 � are positive at least for small

values of r� Then� the estimate of the dimension of Jm
M� must be d 
 ��

�� Formal statements and proofs�

We start giving some de�nitions and notation� Let 
M�f� �� be a dynamics sat�

isfying conditions 
����� We denote by ON 
z� the �rst N points of the orbit

of z �M� and by �N the corresponding empirical measure of the orbit� that is

�N �
 �
N

PN��
i�� �f i�z�� The weak convergence of a sequence of measures f	Ng to a

measure 	 is denoted by 	N
w� 	� and the support of a measure 	 by spt
	�� We

denote by 	 jA the restriction of the measure 	 to the set A� by �A the boundary

of the set A� and by g
	 the measure induced by 	 under the mapping g� that is

g
	
A� 
 	
g��
A�� for any set A �M�

Let dim
A� denote the Hausdor� dimension ���� of the set A� The Hausdor�

dimension of the measure 	 is

dim 	 �
 inffdim
A� � �
A� � �g�

The set of k�dimensional linear subspaces of Rn is denoted by G
n� k�� and the

orthogonal projection of Rn onto T � G
n� k� is denoted by PT�

In this section we give conditions guaranteeing that the number d of de�

��



grees of freedom of the dynamics can be recovered from ON 
z�� Notice that

this framework covers the case of reconstructed dynamics� The m�dimensional

embedding of the time series O
�m�
N 
see Section � for the notation� is an or�

bit of the dynamics 
Jm
M�� f� �
 Jm � f � J��m � 	 �
 f�
�� where Jm
z� �



h
z�� h
f
z��� ���� h
fm��
z����

Theorem ���� Let M be a C��� d�dimensional submanifold of Rn� let f be a

measurable dynamics on M� and let � be an f �invariant� ergodic and ��exact

dimensional Borel probability measure onM with � � d��� Let z �M� xi�ON 
z��

r � �� and XN�r �
 �
N


VN�r�
t
VN�r� where VN�r is the matrix which has as rows the

coordinates of the vectors xj�xi with respect to an arbitrarily chosen orthonormal

basis of Rn� with the index j ranging in the set N �
 fj � xj � ON 
z��B
xi� r�g�

Let �N�r�� � 	 	 	 � �N�r�n be the eigenvalues of XN�r�

b�N�r�j �

�N�r�jPn
l�� �N�r�l

� j 
 �� ���� n� and

�k �
 lim inf
r��

lim
N��

ln
�Pn

j�k�� b�N�r�j

�
ln r

� k 
 �� ���� n� ��

Then the following implications hold ��a�e� z�

k � d
� �k � ��

��



To prove this theorem we need the following lemma�

Lemma ���� Let � be a Borel probability measure on M � R
n� Let x � spt
���

k � f�� �� ���� n��g and let Tk�r � G
n� k� be the subspace for which the minimum�

over the set G
n� k�� of

Er
T� �

Z
B�x�r�


jy� x� PT
y � x�j��� d�
y��

is attained� where PT denotes the orthogonal projection of Rn onto T � G
n� k��

Let B be an arbitrary orthonormal basis of Rn� and let Xr be the matrix with


i� j� entry given by Z
B�x�r�


yi � xi�
yj � xj� d�
y��

where yi�xi is the i�th coordinate of the vector y�x with respect to B� Let �r�� �

	 	 	 � �r�n be the eigenvalues of Xr� and let wr�i� i 
 �� ���� n be the corresponding

eigenvectors� Then

�i� Tk�r 
 spanfwr��� ����wr�kg�

�ii� Er
Tk�r� 

Pn

j�k�� �r�j�

Proof of Lemma ���� See the proof of Theorem 	 given in ��� for discrete

measures�

��



Remark �� Notice that� for k 
 �� Lemma ��� gives

nX
j��

�r�j 

Z
B�x�r�


jy � xj��� d�
y��

Proof of Theorem ���� Let TN�k�r be the subspace in G
n� k� for which the

minimum of

EN�r
T� �

R
B�xi�r�


jy� xi � PT
y � xi�j��� d�N 
y�

is attained 
recall that �N is the empirical measure of the orbit�� It is known 
see

��� or Lemma ��	� that

EN�r
TN�k�r� 

Pn

j�k�� �N�r�j and TN�k�r 
 spanf wN�r��� ����wN�r�kg�

where wN�r�j� j 
 �� ���� k are the eigenvectors corresponding to the �rst k eigen�

values of XN�r�

Let Xr be the matrix in Lemma ��	 for the point xi and the measure �� let

�r�� � 	 	 	 � �r�n be the eigenvalues of Xr� and let fwr��� ����wr�ng be the corre�

sponding eigenvectors� Using that M is a d�dimensional submanifold� �B
xi� r� is

an n�� dimensional submanifold� and dim � � d��� we obtain that �
�B
xi� r��

M� 
 � for enough small r� This fact� together with �N
w� � for ��a�e� z �M�

gives �N jB
xi� r�
w� � jB
xi� r� � Therefore limN��XN�r 
 Xr for ��a�e� z �M

and any xi�ON 
z�� Then� by the continuous dependence of the spectrum of a

	�



matrix upon its entries and Lemma ��	 we have

lim
N��

nX
j�k��

b�N�r�j 
 lim
N��

nX
j�k��

�N�r�jPn
l�� �N�r�l



nX

j�k��

�r�jPn
l�� �r�l







R
B�xi�r�

����y � xi � PTk�r 
y� xi�
���
�

��
d�
y�R

B�xi�r�

jy� xij��� d�
y�

��a�e� z �M�

where Tk�r 
 spanfwr��� ����wr�kg� Therefore

�k 
 lim inf
r��

ln

�
Er�Tk�r�R

B�xi�r�

jy�xij��

�
d��y�



ln r

��a�e� z �M�

�i� We prove that k � d implies �k � ��

Let 
U� 
� be a chart at xi �M� where U is a neighborhood of xi� and 
 is a C���

di�eomorphism on U such that 

xi� 
 	� Since 
 is C��� there exist constants

L and r� such that j
��
t�� 
��
	��D
��
	�tj� � L 
jtj����� holds if jtj� � r��

Furthermore for any constant K� with K � kD

xi�k� there exists an r� � r�
K

such that j

y�� 

xi�j� � K jy � xij� holds if jy � xij� � r�� Let Txi
M� denote

the tangent space of M at xi� Let r � r�� y �B
xi� r� and t 
 

y�� Then

���y � xi � PTxi �M�
y� xi�
���
�



���
��
t�� 
��
	�� PTxi �M�

��
t�� 
��
	��

���
�
�

j
��
t�� 
��
	��D
��
	�tj� � L 
jtj����� 
 L 
j

y�� 

xi�j����� �

	�



LK���r� jy� xij� �

where the �rst inequality holds because D
��
	�t is a vector in Txi
M�� Thus

Er
Td�r� � Er
Txi
M�� � 
LK���r��
� R

B�xi�r�

jy� xij��� d�
y� for r � r�� and

therefore �d � 	� holds� If k � d then Er
Tk�r� � Er
Td�r� so that �k � �d � 	��

�ii� We prove that �k � � implies that k � d�

Assume that k � d� Since �k � �� for any � with � � � � �k there is an r� such

that

Er
Td�r� � Er
Tk�r� � r�k��
Z
B�xi�r�


jy � xij��� d�
y� 
����

for r � r�� Since � is an ��exact dimensional measure� with � � d � �� we can

obtain an analogous result to that given in Theorem 	 of �	��� for any � � ��

and for ��a�e� xi � M there are positive constants C� S and r�� with S � � and

r� � r�� depending on xi and on the chosen atlas of M� such that for any linear

map � � Rn� R
n�

k�k� �
C

r���

�
�

�
B
xi� Sr��

Z
B�xi�r�


j�
y� xi�j��� d�
y�

��	�

��	�

holds for r � r�� Taking � with � � � � �k��
�
� � 
 PTd�r �PTk�r in 
��	�� and using


���� we obtain ���PTd�r � PTk�r
���
�
�

		



C

r���

�
�

�
B
xi� Sr��

Z
B�xi�r�

����
PTd�r � PTk�r �
y� xi�
���
�

��
d�
y�

��	�
�

C

r��� 
�
B
xi� Sr���
�
�

h

Er
Tk�r��

�
� � 
Er
Td�r��

�
�

i
�

	Cr
�k��

� ��
�
�
B
xi� r��

�
B
xi� Sr��


�	�

����

for r � r�� This inequality� together with the fact that � is an exact dimen�

sional measure� give that limr��

���PTd�r � PTk�r
���
�


 �� which contradicts that

Tk�r � G
n� k� with k � d�

Remark �� The hypotheses that � is an ��exact dimensional measure with dim� �

d � � forces the �rst inequality in ����	 to be true� which gives the desired con�

tradiction� In fact� the two last inequalities in ����	 might hold for measures

concentrated near the kernel Tk�r of the linear map PTd�r � PTk�r � but then the

dimension of such measures has to be less than or equal to d� ��

Remark �� Let xi � ON 
z� and let �
�i�
N�r�j� j 
 �� ���� n be the eigenvalues� given

in a decreasing ordering� of the matrix XN�r at xi� Let I be a subset of indices

of f�� ����� Ng� and let hb�N�r�ji be an average� over the points corresponding to the

	�



indices in I� of the normalized j�th eigenvalue� j 
 �� ���� n� Let


l�I �
 lim inf
r��

lim
N��

ln
�Pn

j�l�� hb�N�r�ji
�

ln r
� l 
 �� ���� n� ��

Then by the inequalities

minf��i�N�r�j � i � Ig � hb�N�r�ji � maxf��i�N�r�j � i � Ig

and Theorem ��
 we have that

l � d
� 
l�Ik � �

for ��a�e� z �M� which also implies hb�N�r�ji � � and hbsN�r�ji � � for any j � d�

large N� and small r� where bsN�r�j �
 sN�r�jPn

j��
sN�r�j

and sN�r�j 

p
�N�r�j is the j�

th singular value of the matrix �p
N
VN�r� This gives a theoretical support to the

algorithm proposed in Section 	�

	�



�� Adaptation of the Eckmann and Ruelle algorithm to the

computation of the Liapunov exponents in smooth sub�

manifolds�

Let 
M�f� �� be a dynamics satisfying the regularity conditions in 
����� We

assume that f is a C��� mapping and M is a d�dimensional C��� manifold� Let

fu�� u�� ���� uN��g be a scalar time series obtained from a smooth observation of the

dynamics� and let O�m�
N �
 fxi� i 
 �� ���� N �mg be a m�dimensional embedding

of the time series with m � 	d� The Eckmann and Ruelle algorithm 
E�R�A� for

the sequel� for the estimation of the Liapunov spectrum 
see �	��� is based on the

estimation of the tangent maps from O
�m�
N � They take as estimate of the tangent

map at xi the linear map Si which minimizes� in the set L
Rm� of linear maps

S � Rm� R
m� the mean square error

X
j�N

�
jxj�� � xi�� � S
xj � xi�j�

��
�

where N denotes the set of indices corresponding to a given number of closest

neighbouring points to xi�

Since O�m�
N � Jm
M�� where Jm
M� is a d�dimensional submanifold of Rm� the

tangent map at xi for the embedded dynamics is de�ned on the space Txi

Jm
M��

tangent to Jm
M� at xi� Therefore� we can avoid the issue of the detection of the

	�



m� d spurious exponents 
compare the method used in �		� and �	�� to solve the

issue of the spurious exponents�� if the estimates of the tangent maps belong to

L
Rd�� The procedure we describe below was �rst proposed by Darbyshire and

Broomhead �	�� and Stoop and Parisi �	���

Let T�
i be an estimate of Txi


Jm
M��� and� for j � N � let PT�
i

xj � xi�� be

the orthogonal projection of the vector xj � xi on T�
i and let r be a small radius�

We give as estimate of the tangent map at xi the linear map SN�r�i which best

describes how the evolution law takes the vectors PT�
i

xj � xi� to the vectors

PT�
i��


xj���xi���� for j � Q �
 f j � N � PT�
i

xj �xi� � B
	� r�g� That is� SN�r�i

is the linear map which minimizes� in L
Rd�� the mean square error

E
N� r�i
S� �


X
j�Q



���PT�

i��

xj�� � xi���� SPT�

i

xj � xi�

���
�
���

We take as estimate of Txi

Jm
M�� the d�dimensional linear subspace T�

i which

best �ts the data� in the sense that it minimizes the sum of the Euclidean dis�

tances between the vectors xj � xi and T�
i � for j � N � T�

i is the linear subspace

spanned by the d eigenvectors corresponding to the d largest eigenvalues of the

correlation matrix Xr� 
see Section 	 for the de�nition of this matrix�� Let Gi

be the orthonormal basis of T�
i given by these eigenvectors� and let Bi be the

d
m matrix whose rows are the coordinates of the vectors of Gi expressed in the

canonical basis of Rm� Then� Bi is the matrix of the orthogonal projection PT�
i

�

	�



R
m � T�

i expressed with respect to the canonical basis of the original space Rm

and with respect to the orthonormal basis Gi of the image space T�
i � Therefore�

the matrix of the linear map SN�r�i expressed with respect to the orthonormal

bases Gi and Gi�� is the d
 d matrix which minimizes the expression

EN�r�i
S� 

X
j�Q


jBi��
xj�� � xi���� SBi
xj � xi�j���� 
����

Let �j � j 
 �� ���� d be the Liapunov exponents of the tangent map� Let

�K�N�r�j� j 
 �� ���� d be the estimates of the Liapunov exponents provided by the

algorithm� obtained from an iterative QR decomposition of the d 
 d matrix

SN�r�K�� 	SN�r�K�� 	 	 	SN�r�� 	SN�r��� In ��� it is proved that if the measure � is exact

dimensional with dim� � d � �� then the adaptation of E�R�A� described above

gives the whole Liapunov spectrum of the tangent map� i�e�

lim
K��

lim
r��

lim
N��

�K�N�r�j 
 �j � j 
 �� ���� d�

The proof relies on the convergence of SN�r�i to Df�
xi� where f� 
 Jm � f � J��m �

that is

lim
r��

lim
N��

SN�r�i 
 Df�
xi��

In ��� we show that limN�� SN�r�i 
 Sr�i where Sr�i is the natural estimate of the

action of Df� in the ball B
xi� r�� in the sense that it is the linear map which min�

	�



imizes errors� with respect to the ergodic measure 	 
 Jm��� The most delicate

part of the proof is to see that� under the above hypotheses� limr�� Sr�i 
 Df�
xi�

holds� Notice that if the ergodic measure is concentrated near a submanifold with

dimension less than or equal to d that convergence may fail to hold� This actually

occurs� for instance� in the case of a limit cycle attractor in the plane� mentioned

at the beginning of the introduction�

If the dimension d is correctly estimated and the data are consistent with a

di�erentiable dynamics 
a test of di�erentiability can be seen in �	��� then the

whole Liapunov spectrum of the dynamics can be computed with an arbitrary

accuracy 
see Table I��

A right estimation of the true value of d is essential for a right computation

of the Liapunov spectrum� If d is overestimate there appear spurious exponents�

If d is underestimate then the algorithm does not correctly work 
see Table II��

If the estimate of d coincides with the dimension of the unstable manifold� the

algorithm computes the action of the tangent map along the unstable manifold�

One might hope that in this case the algorithm should give the non negative part

of the Liapunov spectrum� This seems in contradiction with the numerical results

in Table II� The reason of this disagreement could be due to the fact that the

unstable global manifold is not a di�erentiable manifold because of the complex

folds of the global unstable manifold onto itself over the chaotic attractor� This

	�



explanation is also con�rmed by Table II� which shows that for increasing embed�

ding dimensions� for which the unstable manifold is supposed to be unfolded� the

algorithm gives reasonably good estimates of the non negative part of the Lia�

punov spectrum� If this pattern is observed in computing the Liapunov spectrum

of a dynamics� it gives an indication that the estimate D of the number of degrees

of freedom d should be increased�
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Figure captions�

Figure ��

Average normalized singular values as a function of the radius for a sample of

a Uniform distribution� The entry parameters are N 
 ������ m � f	� ���� �g and

rmax 
 ��	��

Figure ��

Dimensional analysis for a time series from the observation of a Henon system�

The equations of the dynamics are xk�� 
 � � ���x�k � yk� yk�� 
 ���xk and the

observable is h
x� y� 
 x��y�� The entry parameters are N 
 ������ m � f�� �� �g

and rmax 
 ����


a� Average normalized singular values as a function of the radius�


b� Scaling law for the average normalized errors for m � f�� �� �g and k 
 �� 	�

Figure ��

Dimensional analysis for the time series in Fig� 	 perturbed with a Gaussian

noise with a �� standard deviation of the standard deviation of the unperturbed

signal� The entry parameters are N 
 ������ m � f�� �� �g and rmax 
 ����

Figure 
�

Dimensional analysis for a time series from the observation of the Lorenz

dynamics� The equations are
�
x
 ���
x � y��

�
y
 �xz � ����	x � y�

�
z
 xy � �z

�	



and the observable is h
x� y� z� 
 y� A orbit of this system is obtained using a

fourth�order Runge�Kutta method with a integration time step h 
 ������ and the

sample time is !t 
 ����� The entry parameters are N 
 ������ m � f�� �� �� �g

and rmax 
 ����


a� Average normalized singular values as a function of the radius�


b� Scaling law for the average normalized errors for m � f�� �g� and k 
 �� 	� ��

��



Table captions�

Table I� Liapunov exponents of Lorenz dynamics in Fig� � as a function of

the embedding dimension m� The data are the observation of a ������ points

orbit of this system with observable h
x� y� z� 
 y� We have taken D 
 � as the

estimate of the dimension d of the submanifold where the dynamics is de�ned� It

is known that the true values of the Liapunov exponents are �� � ���� �� 
 � and

�� � �		��� Notice the high accuracy of the estimates of the three exponents for

m � ��

Table II� Liapunov exponents of Lorenz dynamics in Fig� � as a function of the

embedding dimension m� The data are the observation of a ������ points orbit of

this system with observable h
x� y� z� 
 y� We have taken D 
 	 as the estimate

of the dimension d of the submanifold where the dynamics is de�ned� A non

correct estimate of the dimension d cause a bad estimate for the �rst Liapunov

exponent for m � � and for the second one for m � ���

��



TABLE I

m 
 � m 
 � m 
 � m 
 � m 
 � m 
 �

�� ���	�� ������ ����	� ���	�� ������ ������

�� ������� ������� ������ ������	 ������� �����	

�� �	������ �	�����	 �	����		 �	������ �		����� �		�����

TABLE II

m 
 	 m 
 � m 
 � m 
 � m 
 � m 
 � m 
 �

�� 	������ ������ ���	�� 	����� 	�	��� ������ ������

�� ������	 ������� �����	� ������� ���	��� ������� �������

m 
 � m 
 �� m 
 �� m 
 �	 m 
 �� m 
 �� m 
 ��

�� ������ ������ ������ ������ ������ ������ ������

�� ������� ������� ���	��� ������� ������� ������� �������
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