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Universidad Complutense, 28223 Madrid. Spain

e-mail: mmoranca@ccee.ucm.es

Abstract

We propose a noise reduction algorithm, based on a maximum

likelihood criterion, for chaotic multivariate time series corrupted by

observational noise. We also propose a noise reduction measure based

on the mean distance of the points of the cleaned time series to the

attractor. We give evidence of the convergence of the empirical mea-

sure of the cleaned time series to the underlying invariant measure,

which means the possibility of recovering the long run behavior of the
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true dynamics.
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The noise reduction problem arises when a sequence of states

(time series) of a system governed by a deterministic law is recorded

using a measurement process subject to error (measurement noise).

Many algorithms have been proposed in order to minimize the loss,

due to noise, of information about the behavior of the system.

In this paper we consider noise reduction for multivariate time

series. This case is relevant to laboratory experiments or real world

processes in which the state variables of a multivariate dynamical

system can be measured through time. We propose a noise reduc-

tion algorithm based, as are many existing algorithms, on best local

linear fits for the unknown smooth dynamics. However, while ex-

isting algorithms use a least squares approach, ours is based on the

statistical theory of measurement error models (regression models

wherein, as happens in noise reduction problems, both dependent

and independent variables are measured with error).

The other main point of our approach is that it aims to re-

cover the long run statistical regularity of the underlying dynam-

ics, rather than to separate the noise and the true signal, as do

the existing algorithms. Our results seem to indicate the existence
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of intrinsic bounds for the exact pointwise prediction of the true

dynamics although the exact prediction of the long run behavior

of the underlying dynamics could be possible, at least in the low

noise limit.

We give empirical evidence of the efficiency of our algorithm in

the cleaning of Hénon and Lorenz dynamics corrupted by noise of

low and high amplitudes, and for time series ranging from 500 to

50000 data points. In the case of short time series, in terms of

distance to the attractor, up to a 80% noise reduction is achieved.

In the case of larger data sets, greater reductions (up to a 95%)

are possible. This allows us to recover fine details of the geometric

structure of the attractor. We prove in the Appendix that our al-

gorithm together with some of the most widely used algorithms can

be understood in a common framework: all of them are based on

orthogonal projections, with respect to some metric, onto optimal

linear subspaces.
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1 Introduction

Many problems related to noise reduction can be described by the equations

xk+1 = f(xk, ξk),

Xk = g(xk) + ek,

where xk ∈ Rd is the unobservable state vector of a system at period k; f

is a smooth deterministic dynamical law; g : Rd → Rp is a smooth vectorial

function or observable; ξk, ek are multivariate random variables; and Xk,

k = 1, 2, ..., N, is the available data set or time series. In this scheme ξk is

referred to as the dynamical noise, and ek as the measurement noise.

There is a rich literature on noise reduction algorithms (see for instance

the reviews of Grassberger et al[1], Kostelich and Schreiber[2] and Davies[3]).

Most such studies address the case in which there exists only measure-

ment noise and the time series is a scalar one.[1],[4],[5],[6],[7] These algo-

rithms reconstruct the scalar signal as an m-dimensional time series Xm
k =

(Xk, Xk+1, ..., Xk+m−1), k = 1, 2, ..., N−m+1. Takens’s theorem guarantees[8]

that, if m ≥ 2d + 1, in absence of noise, and for generic observable g, the re-

constructed time series Xm
k , k = 1, 2, ..., N −m+1, provides a diffeomorphic

image of the chaotic attractor associated with f. Then the guess for the clean
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data underlying the noisy time series is the projection X̃m
k of each Xm

k onto

the d-dimensional linear subspace which best fits, in a least squares sense,

the data in a small neighborhood of Xm
k . The algorithms then iterate this

procedure, starting from the projections X̃m
k , k = 1, 2, ..., N −m + 1.

A further specialization of the general problem which has also been stud-

ied is the case in which the evolution law f is known (or at least there is

known a clean time series)[9],[10],[11] and one must obtain the most likely

trajectory xk, k = 1, 2, ..., N, from the data set.

The dynamical noise problem is relevant if no deterministic evolution law

can fully explain the time evolution of the observed system. The interested

reader can find information on this issue and on the related shadowing the-

orems in Refs.[12],[13],[14]

In this paper we restrict our attention to the noise reduction problem in

the case in which there does not exist dynamical noise, f is unknown, g is

the identity map, xk and Xk are multivariate vectors, and the measurement

noise ek is an i.i.d. stochastic process, i.e.

xk+1 = f(xk),

Xk = xk + ek, k = 1, ..., N.

There exist only two algorithms addressed to[15] or adaptable to[4],[16]
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multivariate time series. These algorithms extend in a natural way the

method described above, i.e, they compute best linear local estimates, in

a least squares sense, of the empirical one-time map[4],[16] or they use or-

thogonal local projections of data points embedded in higher dimensional

spaces[15] (total least squares method).

The two main features of our algorithm are the following:

1) We use unbiased local linear estimates of the dynamics (see equation

(1)). It is known that, in linear models wherein the independent variables are

also measured with error, the least squares criterion used in the algorithms

discussed above does not give unbiased estimators, the bias being larger for

increasing variances or seriously correlated errors.

The theory that treats the models wherein both dependent and inde-

pendent variables are measured with error is that of measurement error

models[17]. We incorporate this theory in the design of our algorithm, taking

advantage of the structure of the covariance matrix of the errors in order to

obtain a new time series having almost the same statistical and geometric

properties as the true dynamics, even in the case of high noise amplitudes

or when the variances of the components of the error are different and/or

correlated. This may be applied in experimental settings in order to exploit
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the information available a priori on the specific degree of uncertainty of

each state coordinate, as would happen if each were measured by a different

device. It also may exploit the information on the correlation between errors

of different coordinates as would be the case if, for instance, one of these co-

ordinates were the rate of change of another. In Section 3 we empirically test

the efficiency of the total least squares method against that of measurement

error models.

2) The objective of our algorithm is a geometric noise reduction.

We say that the cleaned time series has the same geometric properties as

the true dynamics (geometric cleaning) when it converges, in the Hausdorff

metric, to the true time series (or to the attractor). We present empirical

evidence (see Section 3) of the weak convergence of the empirical measure of

the cleaned time series (the probability measure that gives the same weight

to each point of the time series) to the underlying invariant measure. In this

sense both clean and cleaned time series have the same statistical properties;

they generate the same empirical measure and therefore they assign the same

probability to each ball of the phase space. Notice that in chaotic dynamics

high accuracy can be attained in the determination of the probability of a

set of states although there exists an intrinsic limit to the prediction of the
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exact state of the system. Thus our goal is to obtain a new time series close

to the true time series in a geometric and statistical sense rather than in the

sense of pointwise convergence between the two time series.

Our starting point is the algorithm of Kostelich and Yorke[4]. These au-

thors have already pointed out the unsuitability of the least squares method

for computing the best linear maps, and they suggested the use of the theory

of measurement error models. Jaeger and Kantz[18] have also proposed the

use of the theory of measurement error models in the problem of estimation

of the dynamics underlying a noisy time series. This is an area closely related

to noise reduction, in which the bad behavior of the least squares estimator

and the development of techniques based on maximum likelihood criteria are

well established[19],[20],[21],[22].

The paper is organized as follows. In Section 2 we describe our algorithm

and a new measure of noise reduction, which is intended to measure the

geometric and statistical proximity of two time series. We also recall from

the literature the standard measures of noise reduction based on pointwise

and dynamic proximity. Section 3 is devoted to the results obtained by

applying our algorithm to noisy multivariate time series from the Hénon

map and the Lorenz dynamics. In the Appendix we show that our method
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can be regarded as a local linear projection onto an optimal subspace, with

respect to a special metric that incorporates the information contained in

the error covariance matrix. We also show that the various local projection

methods used in the literature can be understood as local projections with

respect to suitable metrics.

2 The algorithm and noise reduction mea-

sures

We now define more precisely the elements of the problem. Our hypothesis is

that the observed multivariate time series {Xi, i = 1, ..., N} ⊂ Rd is obtained

by adding a noise component ei ∈ Rd to a deterministic signal xi, that is,

Xi = xi +ei, where xi+1 = f(xi), 1 ≤ i ≤ N−1, and f is a smooth evolution

law. We assume that the ei are independently Gaussian distributed with null

mean.

Our algorithm starts by taking a neighborhood Ui for each point Xi and

it uses the theory of measurement error models to obtain the matrix Ai such

that

Xj+1 − 〈Xi+1〉Ui
≈ (

Xj − 〈Xi〉Ui

)
Ai, Xj ∈ Ui (1)
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where 〈Xi〉Ui
denotes the center of mass of the points of the neighborhood Ui

and 〈Xi+1〉Ui
is the center of mass of their images. This theory (i) guarantees

that Ai is the unbiased maximum likelihood estimate for the matrix of the

underlying linear model, and (ii) gives, for each Xj ∈ Ui, the maximum

likelihood estimates x̂j+1 and x̂j for xj+1 and xj respectively.

2.1 The algorithm

Let Σ be the empirical covariance matrix of the error terms of the 2d-

dimensional time series {(Xi+1,Xi)}i=1,...,N−1. We assume first that Σ is

known. If it were unknown we would take Σ = σ2I, for arbitrary σ, at

the first iteration.

The steps of the algorithm are the following:

1) For each point Xi of the noisy time series, construct a neighborhood

Ui consisting of the NV points of the noisy time series closest to Xi.

2) Compute the center of mass,

〈Xi〉Ui
:=

1

NV

∑
j:Xj∈Ui

Xj,

of the points in Ui and the center of mass,

〈Xi+1〉Ui
:=

1

NV

∑
j:Xj∈Ui

Xj+1,
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of their images.

3) Compute the 2d× 2d matrix

MZZ :=
1

NV

∑
j:Xj∈Ui

Zt
jZj

where Zj ∈ R2d is defined as

Zj := (Xj+1 − 〈Xi+1〉Ui
,Xj − 〈Xi〉Ui

)

4) Compute the eigenvalues and an orthonormal basis of eigenvectors of

the matrix MZZ in the metric of Σ.

A set of vectors {w1, ...,w2d} ⊂ R2d is called orthonormal basis of eigen-

vectors of MZZ in the metric of Σ if they satisfy i) there exist real num-

bers λ1 ≥ λ2 ≥ ... ≥ λ2d such that MZZwi=λiΣwi, 1 ≤ i ≤ 2d, and ii)

wt
iΣwj = δij, for all i, j. The scalars λi are called eigenvalues of MZZ in the

metric of Σ. Such basis of eigenvectors is given by the columns of the matrix

QΛ−1/2H, where the columns of Q are a basis of orthonormal eigenvectors

of Σ (in the Euclidean metric), Λ is a diagonal matrix of eigenvalues of Σ,

and the columns of H are an orthonormal basis of eigenvectors of the matrix

Λ−1/2QtMZZQΛ−1/2 (see details in Ref.[17], page 391).

5) The estimate for zj := (xj+1 − 〈xi+1〉Ui
,xj − 〈xi〉Ui

) is

ẑj = (I− ΣBBt)Zt
j (2)
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where B is the matrix which has as columns the eigenvectors {wd+1, ...,w2d}

of MZZ, in the metric of Σ, corresponding to the d smallest eigenvalues.

In Theorem 4.1.1 of Ref.[17] it is proved that ẑj is an unbiased maximum

likelihood estimate of zj under the hypotheses of linearity of the model and

of Gaussian errors.

6) Take as estimate of (xi+1,xi) the values

̂(xi+1,xi) := (〈Xi+1〉Ui
, 〈Xi〉Ui

) + ẑi (3)

7) For the first and the last point of the time series, we have a single

estimate of the deterministic part. For each of the remaining points Xi,

i 6= 1, N, there are the two estimates obtained from the neighborhoods Ui−1

and Ui respectively. Since we have empirical evidence that the estimate cor-

responding to the neighborhood Ui−1 works better we take it as the estimate

of xi.

8) Take as the estimate of Σ for iteration k + 1 the empirical covariance

matrix of the estimated errors at iteration k. The estimated errors at iteration

k are defined by ûi := (x̂k
i+1 − x̂k−1

i+1 , x̂k
i − x̂k−1

i ) where x̂k
i is the estimate of

the i-th point of the time series at the iteration k and x̂0
i = Xi.

9) With {x̂i} i = 1, ..., N, as the new data set and Σ as in step 8, we

iterate the procedure until the results cease to improve.
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Remark 1 If the error terms are uncorrelated and have the same known

or unknown variance σ2, that is Σ = σ2I, then the matrix B above has as

columns {σ−1vj, j = d + 1, ..., 2d} where vj, j = 1, ..., 2d, are an orthonor-

mal basis, respect to the Euclidean metric, of eigenvectors of the matrix MZZ.

Then ẑj above is the orthogonal projection of Zj onto the d-dimensional lin-

ear subspace which minimizes the Euclidean distance to the data (see Remark

below). Thus, at the first iteration, the core of our method essentially coin-

cides with the algorithm proposed independently by Cawley and Hsu[5] and

Sauer[23] for scalar time series. However, the algorithms differ at later iter-

ations.

Remark 2 In the Appendix we prove that ẑj in equation (2) is the projection

of Zj onto the best d-dimensional linear subspace Td with respect to the metric

induced by the inverse of the covariance matrix of the errors. That is, Td is

the subspace for which the minimum in T of

∑
j:Xj∈Ui

(Zj − PTZj)Σ
−1(Zj − PTZj)

t

is attained, where PTZj := arg miny∈T (Zj−y)Σ−1(Zj−y)t is the orthogonal

projection, with respect to the metric induced by Σ−1, of Zj onto T. Notice that

this shows the relation between our method and those proposed by Grassberger
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et al[1] and Hegger and Schreiber[15]. The difference stems from the choice of

metric. These authors choose, instead of Σ, a matrix P which gives almost

all the weight to the central coordinates and practically null weight to the

remaining coordinates of Zj.

2.1.1 Further details of the algorithm

In this section we mention some further details of the algorithm that we have

found empirically efficient.

1. Increased statistical consistency in the estimations

Notice that by equations (2) and (3) we have, in addition to an estimate

of xi+1, estimates of the remaining points belonging to the neighbor-

hood Ui. We store such estimates for the Nprom points in Ui closest

to the base point Xi, and we use them in order to give more robust

averaged estimates of each point in the cleaned time series.

2. Effects of nonlinearity

We have obtained better results working with neighborhoods contain-

ing larger numbers of points, especially for time series with high noise

amplitudes, but this procedure causes a little distortion due to nonlin-
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ear effects. Such distortion can be reduced by replacing the center of

mass of the neighborhoods Ui with the center of mass of a small number

NCT << NV of closest neighbors of Xi. In all the results of the next

section we choose NCT = 25 for large data sets and NCT = 5 for time

series with N ≤ 1000.

Sauer[23] was the first to point out that, due to the presence of small

nonlinearities, locally linear and projective methods introduce errors

which are systematic and make the mean of corrections nonzero. He

proposed to force the corrections of all the points of the neighborhood to

have zero mean in order to compensate for the nonlinearity effect. This

procedure was also recommended by Grassberger et al[1] and Kostelich

and Schreiber[2]. However, we have not found significant improvement

using this device.

3. Badly conditioned linear fits

Linear fits may be badly conditioned when the variance of the indepen-

dent variables is small in comparison to that of the noise. This may

cause the algorithm to make anomalously large corrections; a problem

that some authors[1],[4],[5] solve through controls that anchor the pre-
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dictions to the data. We have observed badly conditioned linear fits

only occasionally, when we have worked with very long time series and

we have taken a small number of points in the neighborhoods. This

problem becomes more relevant for low noise amplitudes, because for

high amplitudes we always take large neighborhoods in order to see the

local geometry of the deterministic part of the time series. We solve the

problem by taking in each neighborhood a minimum number of points

depending on the length, N, of the time series (1%N, for instance),

instead of introducing controls for avoiding anomalous predictions as

do other authors.

2.2 Noise reduction measures

In this section we introduce some measures of noise reduction. Some of them

require knowledge of the deterministic signal or the functional expression of

the dynamics, and some others estimate how much noise is taken out by using

only the noisy time series. The first two measures (see 1 and 2 below) are

commonly used in noise reduction literature [1],[3],[4],[5],[6],[15] and they aim

to measure the pointwise proximity of the true and the adjusted time series

or the dynamic self consistency of the adjusted time series. We use them for
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testing purposes. The goal of our algorithm is to reduce the noise reduction

measure 3 below, which estimates the geometric and statistical proximity.

This measure of noise reduction always improves as the number of iterations

increases (we stop the process when this improvement is not relevant). In

the case of other noise reduction measures the optimal reduction is attained

during the early iterations of the algorithm and in the following iterations

becomes poorer. In the results in Section 3 we give the values and the

iteration at which these measures of reduction give the best results.

Recall that the noisy time series is denoted by {Xi : i = 1, ..., N}, the

clean time series is {xi : i = 1, ..., N}, the cleaned time series at the iteration

k is {x̂k
i : i = 1, ..., N}, and the evolution law is denoted by f.

1. Measure of the pointwise closeness

The rms distance between the time series x and x̂k is defined as

E(x, x̂k) :=

(
1

N

N∑
i=1

∥∥x̂k
i − xi

∥∥2

)1/2

.

If E(x, x̂k) < E(x,X) then the noise has been reduced. The parameter

that gives the percentage of reduction is

R = 100

(
1− E(x, x̂k)

E(x,X)

)
.

18



2. Measure of dynamic closeness

We define two measures, Edyn and Êdyn, of dynamic proximity: The

definition of the first one assumes that f is known, whereas in the

definition of the second one f is supposed unknown and is replaced by

local estimates f̂i at xi. Edyn and Êdyn measure the deviation from the

deterministic behavior of a time series and are defined as

Edyn(x̂k) :=

(
1

N − 1

N−1∑
i=1

∥∥x̂k
i+1 − f(x̂k

i )
∥∥2

)1/2

and

Êdyn(x̂k) :=

(
1

N − 1

N−1∑
i=1

∥∥∥x̂k
i+1 − f̂i(x̂

k
i )

∥∥∥
2
)1/2

.

If Edyn(x̂k) < Edyn(X) (or Êdyn(x̂k) < Êdyn(X)) then the adjusted time

series is more consistent with the dynamics than the original noisy time

series and the noise has been reduced. The parameters which give the

percentage of reduction are

Rdyn := 100

(
1− Edyn(x̂k)

Edyn(X)

)
and R̂dyn := 100

(
1− Êdyn(x̂k)

Êdyn(X)

)
.

3. Measures of geometric and statistical closeness

We have empirically observed that the parameter R defined above can

be small for a time series having geometric and statistical properties

very similar to the original deterministic time series. Think for example
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of a situation in which the adjusted time series is very close to the

attractor (we have global convergence) without there having pointwise

convergence to the original deterministic time series (see for example

the experiment in Figs.1 below). The main measure of noise reduction

we propose is based on the Hausdorff distance between time series. We

define the mean distance between the cleaned time series {x̂k
i } and the

deterministic time series {xi} as

dm(x̂k,x) :=
1

N

N∑
j=1

min
i=1,...,N

∥∥x̂k
j − xi

∥∥ .

Notice that, for long data sets, dm(x̂k,x) provides the mean distance

of {x̂k
i } to the attractor. The noise reduction 〈Rh〉 is then

〈Rh〉 := 100

(
1− dm(x̂k,x)

dm(X,x)

)
.

We also consider the Hausdorff distance between time series

dh(x̂
k,x) := max

j=1,...,N
min

i=1,...,N

∥∥x̂k
j − xi

∥∥ ,

and the corresponding noise reduction measure

Rh := 100

(
1− d(x̂k,x)

d(X,x)

)
.

By the definition of dh, poor performance of the algorithm at even a

single point may cause global inefficiency in the noise reduction level
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based on Rh. Conversely, a high level of noise reduction in an Rh sense

gives strong evidence of the convergence of the support of the empirical

measure associated to the cleaned time series to that of the underly-

ing invariant measure. These measures of noise reduction require the

use of some technique of fast neighbor search such as the box-assisted

method[24] in order to make the algorithm more efficient. We also use

such a technique in the construction of the neighborhoods.

3 Simulation results

In this section we show the results of our algorithm for time series generated

by the Hénon and the Lorenz dynamics corrupted by noise. The Hénon map

is given by the equations

x(k + 1) = 1− ax(k)2 + y(k)

y(k + 1) = bx(k)
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and we use the parameter values a = 1.4 and b = 0.3. The Lorenz dynamic

is defined by

x′ = σ(y − x)

y′ = x(R− z)− y

z′ = xy − bz

and the parameter values we use are σ = 16, R = 45.92 and b = 4. The

equations were integrated using a fourth order Runge-Kutta algorithm with

an integration step of ∆t = 0.001, and the data were recorded with a sampling

time τ = 0.03.

We consider uncorrelated errors with equal and unequal variances. We

assume that we do not know the covariance matrix of the errors, so it is

estimated from the data. We give the results for a simplified version of our

algorithm, that takes for all points of the time series and all iterations of

the algorithm the same number, NV, of points in each neighborhood. This

simplified version of our algorithm is very easy to use because it leaves as pa-

rameters to be chosen only NV and Nprom (the number Itera of iterations

of the algorithm is the value for which the measure of geometric noise reduc-

tion ceases to improve significantly). Recall that the measures of reduction
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are denoted by R,Rdyn, R̂dyn, Rh and 〈Rh〉 , for the pointwise distance, the

dynamical distance, the estimated dynamical distance, the Hausdorff dis-

tance, and the mean distance respectively. We denote by σx, σy, σεx and

σεy the standard deviation of the components of the clean signal and of the

errors. We denote by σS and σε the standard deviation of the multivariate

clean signal and error respectively.

In Fig. 1 (a) we see a clean time series (xi, yi) of 10000 points generated

by the Hénon map, and in (b) the noisy time series obtained by adding to the

clean time series an uncorrelated Gaussian noise component with σεx = 1%σS

and σεy = 1%σS. In (c) we have plotted the clean time series together with

the cleaned time series. It can be seen that the Hausdorff distance between

the two time series is very small (dh = 0.0101). The numerical results for the

degree of reduction are R = 40% (at iteration 3), Rdyn = 51%, R̂dyn = 88%,

Rh = 61% and 〈Rh〉 = 84%.

The experiment above shows that the noise reduction is significantly big-

ger for 〈Rh〉 than for the standard noise reduction measure R. Moreover, 〈Rh〉

always decreases when the number of iterations increases, although R does

not. Recall that if the covariance matrix of the errors is a multiple of the

identity matrix, our method is equivalent to the total least squares method,
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so the discrepancy between the values R and 〈Rh〉 is not due to the choice

of the metric.

In Fig. 2 we have plotted a noisy time series of 10000 points generated

by the Hénon map, with a highly heteroskedastic Gaussian noise. We have

plotted the cleaned time series that our algorithm gives as output together

with the noisy time series. The levels of reduction are R = 83% (at iteration

4), Rdyn = 80%, R̂dyn = 97%, Rh = 95% and 〈Rh〉 = 94%.

We have designed an algorithm based on the total least squares criterion

(TLSA) in order to compare its efficiency with that of our algorithm based on

the maximum likelihood criterion (MLA). TLSA differs from MLA in that it

uses local orthogonal projections with respect to the Euclidean metric rather

than with respect to the metric induced by the inverse of the covariance ma-

trix of the errors. We show in Table I the results of the two algorithms,

when applied to time series generated by Hénon dynamics corrupted with

homoskedastic noises. Since in the homoskedastic case the two methods are

essentially equivalent, the levels of noise reduction, in a 〈Rh〉 sense, attained

by the two algorithms are similar and high. The slightly better performance

of our method is due to the fact that the errors resulting from the second

iteration are not homoskedastic. Compare also the high values of noise re-

24



duction in a Rh sense attained by MLA to the smaller ones attained by

TLSA.

In the heteroskedastic case (see Table II) there is a significant difference

between the levels of noisy reduction attained by each algorithm. We present

two experiments in which σε = 11.2% σs. The first experiment corresponds

to a low level of heteroskedasticity and the second one to a higher level. In

the first case each algorithm gives a large noise reduction, MLA about 12%

larger than TLSA, and in the second case the noise reduction level is smaller,

but now for MLA is about 25% larger than for TLSA. These experiments

also show the high efficiency of our algorithm for short data sets.

We have plotted in Fig. 3 the output of the MLA and TLSA algorithms

for a noisy time series of 500 data points generated by the same dynamics as

that shown in Fig. 2. The difference between the two methods for a short time

series can be seen. The levels of reduction are 〈Rh〉 = 80% and Rh = 78%

for MLA and 〈Rh〉 = 63% and Rh = 40% for TLSA. Also noteworthy is the

high number of iterations, Itera = 45 in the experiment above, at which the

algorithms cease to improve for short time series (see also Table II).

In Table III we present some experiments for noise Lorenz time series.

The results are similar to those obtained for the Hénon dynamics. Such re-
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sults and those given for the Hénon dynamics in Table II give an indication

of the convergence of the output of the algorithm when the number of data

points increases. Better results would require the use of adaptive neighbor-

hoods (other authors that have proposed adaptive neighborhoods are Kern

et al[28]).

We have verified, using the Jarque-Bera test of normality and the his-

tograms of frequencies, that if the noise component is Gaussian, the distribu-

tion of the errors in the succeeding iterations of the algorithm are also Gaus-

sian, so the theory can be applied again with unbiased maximum likelihood

estimators. In the case of non-Gaussian errors the theory ensures strong con-

sistency of the estimators. This fact is confirmed by our numerical results for

noisy time series where the noise has uniform distribution. We have obtained

a value 〈Rh〉 = 86% for a 10000 data point time series generated by a Lorenz

dynamics corrupted by a uniform noise with σεx = 20%σx, σεy = 10%σy and

σεz = 20%σy.

We have contrasted the efficiency of our algorithm, comparing for the

three time series (clean, cleaned and noisy) of the dynamics in Fig. 2 :

(i) the Lyapunov exponents computed with the Eckmann and Ruelle

algorithm[25],[26] and
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(ii) the degrees of freedom[27] of the 2-embedded (and 4-dimensional)

time series, i.e. we compare the degrees of freedom of the time series (xi,xi+1),

(Xi,Xi+1) and (x̂i, x̂i+1), i = 1, ..., N − 1.

(i) The true Lyapunov exponents of the Hénon map are λ1 ∼ 0.419 and

λ2 ∼ −1.623. Since the Eckmann and Ruelle algorithm uses local estimations

of the tangent map at the points of the time series it cannot give the exact

values of the Lyapunov exponents even if we compute them from the clean

time series. The 95% confidence intervals for the values obtained by the

algorithm for the true, cleaned and noisy time series, for different orbits and

realizations of the error term, can be seen in Table IV . The parameters of

the algorithm are kept fixed at the values that work correctly for the clean

time series. The values obtained for the cleaned time series are reasonable

estimates of the true values although we can not obtain good estimates of

the negative exponent from the noisy time series.

(ii) The graphs in Fig. 4 show the mean proportion of the total variability

of the data points in balls of small radius, explained for each one of the

principal components of the covariance matrix of such data points. The

clean and cleaned time series have only two significantly non null singular

values which is an indication of the 2-dimensionality of the true dynamics.
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However, the noisy time series has the four singular values significantly non

null. Observe furthermore that the clean and the cleaned time series have

almost the same behavior at all scales with the only exception being at very

small scales, which shows that more data points will be needed in order to

capture the microstructure of the data and that an improvement in the noise

reduction might be possible. This experiment, together with the high levels

of noise reduction in an Rh sense, gives a strong indication that not only

does the support of the empirical measure, µN , of the cleaned time series

converges to the support of the invariant measure µ but also the measure µN

itself converges weakly to the measure µ.

4 Conclusions

We propose an empirically efficient algorithm with a consistent theoretical

basis. It allows us to obtain significant noise reductions for both low and high

noise amplitudes and for short and long time series, giving as output a time

series with geometric and statistical properties very similar to those of the

clean time series. Further improvement can be made by introducing adaptive

neighborhoods which exploit the geometry of the different parts of the time
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series or at least by reducing the number of points of the neighborhoods as the

number of iterations increase (and consequently the noise level decreases).

Our algorithm requires the empirical adjustment of only two parameters

and it works efficiently without introducing controls for avoiding anomalous

predictions as do the existing algorithms.

When compared to the previous work in the area, the results of our re-

search seem to indicate that the uncertainty derived from the noisy corruption

of chaotic dynamics puts an intrinsic limit on the short run predictability of

the dynamics, whereas the long run behavior could be entirely recovered even

for large noise amplitudes. The adequacy of the approach of noise reduction

measurement based on the mean distance to the attractor 〈Rh〉 , instead of

on the pointwise distance R, is supported by empirical evidence showing a

steady improvement of 〈Rh〉, in contrast to the worsening of R, as the number

of iterations of the algorithm increases.

Further attempts, based on local linear fits, to find a reordering of the

points of the output of our algorithm which reduces the pointwise distance

E(x,x̂k) have proved useless. We think that this is due to the high degree of

dynamical self-coherence indicated by the small residuals in Êdyn(x̂k). This

conjecture is supported by the accuracy in the estimation through the cleaned
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time series of the highly sensitive negative Lyapunov exponent. This and the

local microstructure of the empirical measure revealed by the test of degrees

of freedom also indicates a convergence, in the weak sense, of the empirical

measure µN of the cleaned time series to the natural invariant measure µ.
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APPENDIX

In this appendix we prove the assertions of Remark 2.

Given an n× n symmetric positive definite matrix A we shall denote by

δA the metric induced by the inner product with matrix A:

δA(v,w) := 〈v −w,v −w〉1/2
A :=

(
(v −w)A(v −w)t

)1/2
,v,w ∈Rn.

Let Lp be the set of of p-dimensional linear subspaces of Rn. The orthogonal

projection of v ∈ Rn onto T ∈ Lp in the metric δA is

PTv := arg min
w∈T

δA(v,w).

The δA−distance between v ∈ Rn and T ∈ Lp is δA(v, T ) := δA(v, PTv).

30



Let M be an n × n symmetric matrix. Recall that a system of vec-

tors {w1, ...,wn} ⊂ Rn is called orthonormal system of eigenvectors of M

in the metric δA if they satisfy: i) there exist real numbers λi such that

Mwi=λiAwi, 1 ≤ i ≤ n, and ii) wt
iAwj = δij, for all i, j. The scalars λi are

called eigenvalues of M in the metric δA.

The next theorem is an adaptation of one given by Cawley and Hsu [5]

for the case of the Euclidean metric. The result, applied in the text to the

covariance matrix, Σ, of the errors, also holds for an arbitrary n×n symmetric

positive definite matrix A.

Theorem 3 Let {Zk, k = 1, ..., NV } ∈ Rn, and let A be an n×n symmetric

positive definite matrix. Let σ1 ≥ · · · ≥ σn be the eigenvalues of the n × n

matrix MZZ := 1
NV

ΣNV
k=1Z

t
kZk in the metric of A, let {wi, i = 1, ..., n} be the

corresponding orthonormal eigenvectors in the metric δA and, for 1 ≤ p ≤ n,

let B be the n× (n− p) matrix whose columns are the last n− p eigenvectors

{wp+1, ...,wn}. Then:

i) the linear subspace Tp in Lp which minimizes the mean square δA−1-distance

to the points {Zk, k = 1, ..., NV } is Tp := span{Awt
1, ..., Awt

p}.

ii) PTpZ := ( I− ABBt)Zt, Z ∈Rn.
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Proof. By its definition, Tp = arg minT∈Lp E(T ), where

E(T ) :=
1

NV

∑NV
k=1(Zk − PTZk)A

−1 (Zk − PTZk)
t

Let T ∈ Lp and let {u1, ...,un} be an orthonormal basis of Rn with respect

to the metric δA−1 , such that T = span{u1, ...,up}. From Zk=
∑n

j=1 αk
juj

with αk
j = 〈uj,Zk〉A−1 there follows

Zk − PTZk=
n∑

j=p+1

αk
juj, k = 1, ..., NV.

Therefore,

E(T) =
1

NV

NV∑

k=1

n∑
j=p+1

n∑

l=p+1

αk
j α

k
l ujA

−1ut
l =

1

NV

NV∑

k=1

n∑
j=p+1

(
αk

j

)2
=

1

NV

NV∑

k=1

n∑
j=p+1

ujA
−1Zt

kZkA
−1ut

j =
n∑

j=p+1

ujA
−1MZZA−1ut

j. (4)

Thus, minT∈Lp E(T) = minU
∑n

j=p+1 ujA
−1MZZA−1ut

j where U is the set of

all subsets of vectors of Rn orthonormal with respect to the metric δA−1 and

having cardinality n− p.

Let Q : Rn → R be the quadratic form with matrix A−1MZZA−1, and

let v ∈ Rn with vA−1vt = 1. Let (v1, ..., νn) be the coordinates of v ∈Rn in

the basis {Awt
1, Awt

2, ..., Awt
n}, which is an orthonormal basis with respect

32



to the metric δA−1 . Then 1 = vA−1vt=
∑n

j=1 ν2
j and

Q(v) =

(
n∑

j=1

νjwjA

)
A−1MZZA−1

(
n∑

l=1

νlwlA

)t

=
n∑

j=1

n∑

l=1

νjνlσlwjAwt
l =

n∑
j=1

σjν
2
j = σn(1−

n−1∑
j=1

ν2
j ) +

n−1∑
j=1

σjν
2
j = σn +

n−1∑
j=1

(σj − σn) ν2
j ≥ σn = Q(Awt

n)

Let v ∈ (Awt
n)
⊥

with vA−1vt = 1 and let (ν1, ..., νn−1, 0) be the coordinates

of v in the basis {Awt
1, Awt

2, ..., Awt
n}. Then

Q(v) =
n−1∑
j=1

σjν
2
j = σn−1 +

n−2∑
j=1

(σj − σn−1) ν2
j ≥ σn−1 = Q(Awt

n−1),

and so on. Thus E(T) =
∑n

j=p+1 Q(uj) ≥
∑n

j=p+1 σj =
∑n

j=p+1 Q(Awt
j) =

E(Tp) for any T ∈ Lp. This completes the proof of i). Since {Awt
1, Awt

2, ..., Awt
n}

is an orthonormal basis of Rn in the metric δA−1 , the projection of any vector

Z ∈Rn on Tp is PTpZ = Z−∑n
i=p+1 αiwiA, where αi := 〈Z, Awt

i〉A−1 = Zwt
i.

Then

PTpZ = Z− (αp+1, ..., αn)BtA = Z− (Zwt
p+1, ...,Zwt

n)BtA = Z(I−BBtA).

In the next corollary we give an equivalent expression for PTpZ, which

shows more clearly that the algorithms proposed in [1] and [15] are also

based on projecting onto optimal linear subspaces optimal with respect to a

particular metric δA−1 . In Refs.[1],[15] the authors consider a diagonal matrix
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A which gives practically null weight to the first and last components of the

diagonal entries and weight one to the p central ones. Then they take ẑ

= (I − A1/2DDtA−1/2)Zt as the estimate of z, where D is a matrix whose

n−p columns are the orthonormal eigenvectors of the matrix A−1/2MZZA−1/2

corresponding to the n − p smallest eigenvalues. We show that ẑ = PTpZ

where Tp is the linear subspace in Lp which minimizes the mean square

δA−1−distance.

Let A = QΛQt be the spectral decomposition of the symmetric positive

definite matrix A, i.e. Λ is the diagonal matrix which has as entries the

eigenvalues of A, Q is the matrix which has as columns the eigenvectors of A

and QtQ = I. We now show that the linear map g(Z) := ZQΛ−1/2 transforms

the orthogonal projection in the metric δA−1 into an orthogonal projection

with respect to the Euclidean metric.

Corollary 4 Let σ1 ≥ · · · ≥ σn be the eigenvalues of the n × n ma-

trix Mg(Z)g(Z) := 1
NV

ΣNV
k=1g(Zk)

tg(Zk) and {v1, ...,vn} the corresponding or-

thonormal eigenvectors in the Euclidean metric. Then, for 1 ≤ p ≤ n, and

for Z ∈ Rn,

Tp = span{g−1(v1), ..., g
−1(vp)} and PTpZ := (I−QΛ1/2DDtΛ−1/2Qt)Zt
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where D is the n×(n−p) matrix whose columns are the eigenvectors {vp+1, ...,vn}.

If A is a diagonal matrix then

Mg(Z)g(Z) = A−1/2MZZA−1/2 and PTpZ := (I− A1/2DDtA−1/2)Zt.

Proof. Let T ∈ Lp and let {u1, ...,un} be an orthonormal basis of Rn with

respect to the metric δA−1 such that T = span{u1, ...,up}. Using the spectral

decomposition of A−1 and (4) we get

E(T) =
n∑

j=p+1

ujA
−1MZZA−1ut

j =
n∑

j=p+1

ujQΛ−1QtMZZQΛ−1Qtut
j =

n∑
j=p+1

g(uj)Λ
−1/2QtMZZQΛ−1/2g(uj)

t =
n∑

j=p+1

g(uj)Mg(Z)g(Z)g(uj)
t.

Since g(ui)g(uj)
t = uiQΛ−1/2Λ−1/2Qtuj = δij we have that the set {g(uj) :

j = 1, ..., n} is an orthonormal basis of Rn with respect to the usual inner

product in Rn. Thus, minT∈Lp E(T) = minV
∑n

j=p+1 vj

(
Mg(Z)g(Z)

)
vt

j where

V is the set of all subsets of vectors of Rn orthonormal with respect to the Eu-

clidean metric and having cardinality n−p. Using a similar argument to that

given in the proof of Theorem 3 we can see that E(T) attains its minimum

value when we take as vj the eigenvectors vp+1, ...,vn of Mg(Z)g(Z) correspond-

ing to the last n− p eigenvalues and Tp := span{g−1(v1), ..., g
−1(vp))}. Since

PTpZ = Z−∑n
i=p+1 αig

−1(vi) with αi := 〈Z, g−1(vi)〉A−1 = ZA−1QΛ1/2vt
i we
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get

PTpZ = Z− (αp+1, ..., αn)DtΛ1/2Q = Z(I−A−1QΛ1/2DDtΛ1/2Qt) =

Z(I−QΛ−1/2DDtΛ1/2Qt).

The proof for the case of diagonal A is obvious using that Q = I and Λ = A.
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FIGURE CAPTIONS

FIG 1. Clean (a), noisy (b) and clean together with cleaned (c) time series

from a Hénon dynamics corrupted by uncorrelated homoskedastic Gaussian

noise (εx, εy) with σεx = 1%σS and σεy = 1%σS. The parameters of the

algorithm are N = 10000, Itera = 16, NV = 300, and Nprom = 25.

FIG 2. Noisy and cleaned time series from a Hénon dynamics corrupted

by uncorrelated and highly heteroskedastic noise with σεx = 1%σS and σεy =

15%σS. The parameters of the algorithm are N = 10000, Itera = 6, NV =

2500, and Nprom = 200.

FIG 3. Noisy, cleaned (MLA), cleaned (TLSA) for a short time series

(500 data points) from the noisy Hénon dynamics of Fig. 2. The parameters

for either algorithm are NV = 25, NCT = Nprom = 5 and Itera = 45.

FIG. 4 Average normalized singular values, Srn(j), j = 1, ..., 4 of the

covariance matrix of the data in balls of radius r for the 2-embedded time

series (clean, cleaned and noisy) as a function of the normalized radius rn :=

r
diam

of the balls where diam is the diameter of the time series.
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TABLE CAPTIONS

TABLE I. Noise reduction measures < Rh > and Rh obtained by MLA

and TLSA for a time series of 10000 data points from Hénon dynamics

corrupted by uncorrelated homoskedastic noises.

TABLE II. Noise reduction measure < Rh > obtained by MLA and

TLSA for time series of various lengths from Hénon dynamics corrupted by

uncorrelated heteroskedastic noises.

TABLE III. Noise reduction measure < Rh > obtained by MLA for time

series of various lengths from Lorenz dynamics corrupted by uncorrelated

heteroskedastic noise.

TABLE IV. Estimation of the Lyapunov exponents obtained for the clean,

cleaned and noisy time series of the experiment in Fig. 2.
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TABLE I

HOMOSKEDASTIC CASE

< Rh > and Rh values

N = 10000, Nprom = 25 < Rh > Rh

(NV, ITERA) σεx , σεy , σε MLA TLSA MLA TLSA

(300, 16)
σεx= σεy= 1%σS

σε= 1.4%σS

84 84 61 50

(900, 14)
σεx= σεy= 5%σS

σε= 7.1%σS

90 82 62 42

(1200, 16)
σεx= σεy= 10%σS

σε= 14.1%σS

91 84 68 50
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TABLE II

HETEROSKEDASTIC CASE

< Rh > values

σε = 11.2%σs

σεx = 10%σS = 11.5%σx

σεy = 5%σS = 17.4%σy

σεx = 11%σS = 12.6%σx

σεy = 2%σS = 7%σy

(N, ITERA)

(NV, NPROM)

MLA TLSA
(N, ITERA)

(NV,NPROM)

MLA TLSA

(10000, 13)

(800, 25)

87 73
(10000, 15)

(600, 25)

81 52

(5000, 18)

(400, 25)

84 68
(5000, 14)

(300, 25)

78 50

(1000, 23)

(80, 5)

78 68
(1000, 19)

(60, 5)

63 44

(500, 25)

(40, 5)

65 54
(500, 38)

(25, 5)

57 32
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TABLE III

< Rh > values for MLA

σε= 17%σS

σex= 20%σx= 10.9%σS σey= 10%σx= 6.2%σS σεz= 20%σz= 11.4%σS

N = 50000 N = 10000 N = 3000 N = 1000

< Rh> 90 85 75 60

(NV, ITERA, NPROM) (4000, 11, 50) (800, 10, 50) (300, 6, 25) (50, 20, 5)
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TABLE IV

LYAPUNOV EXPONENTS

CLEAN CLEANED NOISY

λ̂1 0.421± 0.029 0.405± 0.031 0.479± 0.042

λ̂2 −1.605± 0.032 −1.751± 0.077 −0.948± 0.108
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