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Abstract

The balanced-entropy index – recently proposed by Martín et al. [Martín, M.A., Rey, J.-M., and Taguas, F.J., 2005. An entropy-
based heterogeneity index for mass–size distributions in Earth science. Ecological Modelling, 182, 221–228.] as a soil texture
indicator – can be computed for any arbitrary non-uniform particle size partition provided that associated data are available. In this
paper, properties of the index with respect to refinements of the partition are derived. In particular, we analyze how the index value
responds when a partition is refined. Variations in the values of the index are shown to be related to the mass splitting in the finer
partition. Fine textural data – representing soil volume–size distribution – obtained by laser diffractometry from 70 different types
of soils in the Iberian Peninsula are used as a case study to illustrate the theory. The evenness of the underlying distributions is
explored at different (finer) size resolutions by computing the balanced-entropy index for the associated partitions. It is observed
that, in general, the index values increase when the partition is refined. This is shown to be consistent with the spreading of the
mass becoming more uniform when refining the scale. Also, the relative orderings induced by the index computations at different
scales do not differ qualitatively, which is significant for classification purposes. Further, for distributions with a continuous
probability density function, the index values are shown to approach one when the partition size goes to zero. This is a theoretical
property of the index that can be used to test continuity of soil particle size distributions. In our case study, the continuity of the
processed distributions cannot be discarded from the analysis.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Particle size distribution (PSD) measurement and
associated textural classification is one of the most
widely used physical analyses in soil science. Pedo-
transfer methods have received much attention lately
(e.g. Wösten et al., 2001; Pachepsky and Rawls, 2004).
They aim at devising functions to infer significant soil
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properties – notably difficult to measure directly – from
simple soil measurements readily accessible in soil
databases. The fact that obtaining textural data is
relatively easy, together with the valuable information
it provides in order to predict other physical properties,
accounts for the use of PSD, or its associated
parameters, in almost any pedotransfer function. Such
functions have been used to predict pore distribution
factors (Giménez et al., 2001), to estimate soil water
retention (Clapp and Hornberger, 1978; Arya and Paris,
1981; Haverkamp and Parlange, 1986; Tyler and
Wheatcraft, 1989; Kravchenko and Zhang, 1998), and
also bulk density and permeability. These approaches
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require the PSD to be quantified by means of parameters
such as mean particle size, geometric standard deviation
or fractal scaling exponents of cumulative distributions.

The heterogeneity of soil particle sizes may play an
important role in packing and soil compaction, and
consequently it could be related to some of the soil
physical properties mentioned above. Textural analysis
based on heterogeneity parameters could be useful, not
only to characterize soil textures, but also to produce
pedotransfer indices to be used for modelling purposes.

Shannon's entropy (Shannon, 1948a,b) enjoys a well
established reputation as a natural indicator of the
heterogeneity (evenness) of a distribution, e.g. in
ecology as an index of biodiversity (MacArthur, 1955;
Margalef, 1958), and in economics as a measure of
inequality in income distribution (Theil, 1967), or of the
concentration of firms within an industry (Hart, 1971).

Soil texture can be thought of in terms of the relative
contribution of particle sizes to soil mass, that is, in
terms of the evenness of the PSD. Thus, entropy appears
as a suitable candidate to report texture. However, a
naive use of Shannon's formula −PN

i¼1 pilogðpiÞ in the
case of PSD –when reported in terms of the soil mass or
the soil volume pi carried by the class intervals (i=1, 2,
…, N) defined by a partition of the interval of particle
sizes – may be misleading. This is because the lengths
of the class intervals commonly used to report texture
differ wildly, e.g. employing the standard clay, silt, and
sand contents results in extremely unequal class sizes of
0.002 mm for clay, 0.048 mm for silt, and 1.95 mm for
sand. In this situation, Shannon's entropy gives a
distorted measure of evenness in the mass contributions
of particle sizes, and in turn may not be trusted as a
textural parameter. Moreover, a heterogeneity parameter
that takes into account the particle size factor, beyond
the corresponding mass contributions, is expected to
have a closer correlation with soil physical properties—
which in turn could be strongly influenced by such a
factor.

In order to solve this problem, a generalization of the
Shannon entropy has been recently proposed1 as a
meaningful index of soil texture heterogeneity (Martín et
al., 2005). The so-called balanced-entropy (BE) index is
a parameter with information-theoretic content that can
be easily computed from standard textural data, reported
using a partition of the considered particle size interval.
The BE index has been recently shown to be significant
1 The index was first introduced by M.A. Martín and J.-M. Rey
(2002) “Balancing entropy to evaluate biodiversity, soil texture and
economic inequality”, preprint.
as a pedotransfer input for soil water retention prediction
(Martín et al., 2005).

The value of the BE index depends on the prescribed
size partition. In this article the behavior of the index
with respect to the partition is analyzed. In Section 2 the
basic theoretical properties of the balanced-entropy
index with regard to partitions are described. Section 2
relies on the theoretical analysis of the index developed
in the Appendix2 to this paper. Section 3 describes the
soil data processing and the BE analysis developed for
the practical analysis carried out in this study. In Section
4 the results of the analysis are presented and discussed.
Conclusions are given Section 5.

2. Balanced entropy: theory

2.1. Basic theory

If a probability distribution P (indicating, say,
physical mass or volume) is reported – quantized – by
means of a histogram with N class intervals Ii so that
pi=P(Ii) represents the probability mass to the i-th
interval, the Shannon formula is defined as

H ¼ −
XN

i¼1

pilogðpiÞ: ð1Þ

It is a standard convention that 0× log 0=0. In
general, H takes values between 0 and logN. The
entropy index is a fair measure of the evenness of the
quantized distribution if all class intervals are equal: the
larger the value of H the more even is the distribution,
the extreme values H=0 and H=log N corresponding,
respectively, to the most uneven case (a Dirac delta: the
whole mass is supported by only one class interval) and
to the most even case (the distribution with the
“uniform” property: every class interval carries the
same mass fraction).

Thinking of soil texture in terms of the evenness of the
soil particle size distribution (PSD) makes entropy an
appealing candidate as textural indicator — H being
computed from the values of soil mass or soil volume pi
carried by soil particles whose sizes belong to the class
interval Ii. A main obstacle with this approach is the huge
disparity of the size classes Ii usually employed in soil
taxonomy (Soil Conservation Service, 1975). In fact,
reporting PSD by using the standard USDA class intervals
of clay (sizes below 0.002 mm), silt (sizes 0.002–
0.05mm), and sand (sizes 0.05–2mm) produces extremely
2 J.-M. Rey, “Basic quantization properties of balanced-entropy”,
Appendix.



Fig. 2. Contour lines of balanced entropy within the USDA textural
triangle.
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unequal class sizes of 0.002 mm (clay), 0.048 mm (silt),
and 1.95 mm (sand). In this situation, Shannon's entropy
does not give an adequate measure of the evenness of the
mass contributions, in terms of class particle size.

Martín and Rey proposed to balance Shannon's
entropy with a multiplier E=−∑pi log ri that takes into
account differences in class sizes. Here the parameters ri
denote the relative lengths of the class intervals, that is,
ri=length(Ii) / length(I), where I is the full interval of
sizes considered, typically I=[0, 2] (mm). For instance,
in the case of the clay–silt–sand size partition, it is
r1=0.001, r2=0.024, and r3=0.975.

The balanced entropy BE is defined by

BE ¼ H
E

¼
P

pilogðpiÞP
pilogðriÞ ð2Þ

This index preserves the main features of Shannon's
entropy while being adapted to deal with non-uniform
partitions. In general, BE is a normalized index that
takes values between 0 and 1 regardless of the number
and size of class intervals. The boundary values BE=0
and BE=1 correspond, respectively, to the most uneven
case (a Dirac delta) and to the most even case (the
distribution with the uniform property: every class
interval carries a mass equal to its relative size). In the
case that N=2 and for a given partition of the
normalized size interval [0, 1], the distribution can be
described by the probability vector (p1, 1−p1) so that
the values of BE can be represented as a function of p1.
In Fig. 1, where curves for BE vs. p1 for different
partitions have been plotted, it becomes apparent how
BE incorporates size-variability together with the
heterogeneity in mass assignment as measured by H.

Values of BE for soil particle size distributions
defined in terms of clay, silt, and sand USDA contents
are represented within the textural triangle in Fig. 2.
Fig. 1. BE curves for different partitions in the case of N=2 class
intervals: the y-value gives the BE index computed for the mass
distribution ( p1, 1−p1) and for the size partition I1=[0, r1], I2= [r1, 1]
(sizes are considered normalized in the unit interval).
The values of BE range from zero to one, the latter
being approached at the rightmost corner of the textural
triangle. Indeed, BE=1 corresponds to theUSDA fractions
97.5% sand, 2.4% silt and 0.1% clay. Of course, for
uniform structures (sandy, silty or clayey) BE=0, which
properly indicates their textural homogeneity — the full
mass being carried by one class only. Inside the textural
triangle, BE typically increases with the increase in sand
content. This is so because the sand interval supports – by
two orders ofmagnitude– thewidest class of particle sizes.
In the practical comparison of textures, BE clearly
distinguishes between predominantly sandy and predom-
inantly clayey structures. These and other basic properties
of the index BE are discussed in Martín et al. (2005).

2.2. Further properties: inter-scale features of BE

This article is generally concerned with the behavior of
BE in respect to the partition, and specifically when the
partition is refined. A partition∏′ is finer than (or refines)
another partition ∏ if its class intervals are either class
intervals of∏ or subintervals of some class interval of∏.
The BE analysis may render significant information about
how the mass is globally distributed, e.g. when a class
interval is further divided to generate a new (finer) partition.

To interpret properly the variations of the BE index
when a partition is refined, some general working
principles are to be taken into account. These principles
are carefully derived from theory in the Appendix to this
paper. Intuition about them, however, may be obtained
from the information-theoretical interpretation of the BE
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formula considered below (details can be found in
Martín et al., 2005).

Given a mass distribution P on the (normalized)
interval of sizes [0, 1], a size partition ∏={Ii} of [0, 1]
induces a discrete distribution (pi) – the∏-quantization
of P – defined by pi=(P(Ii)). Let BE(∏) denote the
value of the balanced-entropy index for the quantizing
partition ∏. Since ∑ri=1, (ri) always defines a
probability distribution — the (normalized) size distri-
bution. The notations H(∏) or E(∏) will be used when
necessary. It turns out that the balanced-entropy index
can be written as

BEð∏Þ ¼ Hð∏Þ
Hð∏Þ þ djðpijjriÞ ; ð3Þ

where d∏( pi || ri) is the Kullback–Leibler distance
between the mass distribution (pi) and the size
distribution (ri), that obviously depends on the partition
∏. Notice that BE(∏)≈0 if and only if H(∏)≈0, so
that the ∏-quantization of P is a Dirac delta on ∏.
Furthermore, BE(∏)≈1 if, and only if, d∏( pi || ri)≈0,
which occurs if and only if pi≈ ri (see Cover and
Thomas, 1991), that is, the∏-quantization of P is nearly
uniform on ∏, because the mass of each interval of the
partition is given by its length. It is thus convenient to
think of the index BE as a sort of distance from the
quantized distribution (pi) to the distribution with the
uniform property (ri) — with respect to the quantizing
partition ∏. As a particular case, if ∏ is the standard
clay–silt–sand size partition, the higher the value of BE
inside the textural triangle the more uniformly spread is
the mass across the partition, i.e. the closer each mass
fraction pi is to its size supporting value ri for every i.

Building on the interpretation above and on the fact
that BE depends continuously on the pi's, key inter-scale
principles for BE can be formulated as follows:

#1. Small values of the index BE are consistent with P
being nearly discrete, i.e. concentrated at a finite
number of sizes.

#2. A lowering of the value of BE when the partition
is refined is consistent with the measure spread
inside the new class intervals being far from
uniform (e.g., some size interval getting no mass
in the mass splitting).

#3. Near-to-one values of the index BE are consistent
with P being nearly uniform, every class interval
supporting a mass approximately proportional to
its size.

#4. An increase in the value of BE when the partition
is refined is consistent with the measure spread for
the new partition being close to uniform (every
class interval getting nearly the mass share
proportional to its size).

#5. BE-values approaching one when refining the size
partitions is consistent with underlying distribu-
tions having continuous probability density func-
tions (e.g. the normal or lognormal distributions).

#6. BE-values approaching a constant value below
one when refining the partition is consistent with a
fractal underlying distribution.

Rules #1 to #5 are general principles for the bal-
anced-entropy index. They are mathematically estab-
lished from the theory of BE in the Appendix by Rey to
this paper. Proposition #5 can be derived from #4 and
the fact that, for a distribution with a continuous
probability density, the spreading of the mass is nearly
uniform inside intervals of sufficiently fine partitions.
That is, every interval gets a probability mass
approximately proportional to its length (see Appendix).
Property #5 is an interesting feature of the index that
may be used as a test for continuity of mass
distributions. In particular, it may contribute to the
discussion on the singular or continuous nature of PSD
(Buchan et al., 1993; Caniego et al., 2001).

As stated in rule #6, it is also plausible that a
sequence of computed indexes BE(∏k) accumulates
around a certain value other than zero or one. According
to the heuristics above, that would mean that the BE-
“distance” to the uniform splitting remains approxi-
mately constant, which in turn would indicate that the
mass splitting follows a scale-invariance rule — with
respect to the resolutions defined by the partition
sequence. This may happen, for example, when P is a
fractal distribution. In fact, for a self-similar distribution
a suitable sequence of partitions ∏k can be chosen so
that BE(∏k) remains constant for every k. Moreover,
this constant value coincides with the fractal dimension
of the distribution (Martín et al., 2001). See Appendix
for further details.

3. Material and methods

3.1. Soils

Seventy mineral soils from Sierra del Segura and
Sierra de Cazorla (Jaén, Spain) were chosen corres-
ponding to different textural classes and with low
organic matter content. Our samples belong to ten
textural classes, following the USDA classification of
soils. The most common texture was Clay (36 samples)
followed by Clay loam and Sandy loam (7), and Sandy



Table 1
Sample output of the Longbench Mastersizer S, with the percentages of volume quantized according to the partition of the apparatus (the so-called
Malvern partition in this paper)

Size interval Ii (μm) Volume in % Size interval Ii (μm) Volume in % Size interval Ii (μm) Volume in % Size interval Ii (μm) Volume in %

0.05–0.06 0.00 0.81–0.97 0.80 13.18–15.69 2.14 213.95–254.66 1.93
0.06–0.07 0.00 0.97–1.15 0.91 15.69–18.67 1.82 254.66–303.12 0.82
0.07–0.08 0.00 1.15–1.37 1.12 18.67–22.22 1.62 303.12–360.81 0.12
0.08–0.10 0.01 1.37–1.63 1.39 22.22–26.45 1.65 360.81–429.46 0.02
0.10–0.12 0.02 1.63–1.94 1.67 26.45–31.49 1.74 429.46–511.19 0.04
0.12–0.14 0.04 1.94–2.31 1.99 31.49–37.48 1.97 511.19–608.46 0.09
0.14–0.17 0.10 2.31–2.75 2.31 37.48–44.61 2.32 608.46–724.24 0.14
0.17–0.20 0.22 2.75–3.27 2.60 44.61–53.10 2.79 724.24–862.06 0.13
0.20–0.24 0.44 3.27–3.89 2.84 53.10–63.20 3.37 862.06–1026.10 0.07
0.24–0.29 0.71 3.89–4.63 3.02 63.20–75.23 4.05 1026.10–1221.36 0.02
0.29–0.34 0.92 4.63–5.52 3.12 75.23–89.55 4.83 1221.36–1453.77 0.00
0.34–0.40 0.94 5.52–6.57 3.14 89.55–106.59 5.58 1453.77–1730.41 0.00
0.40–0.48 0.91 6.57–7.81 3.14 106.59–126.87 5.96 1730.41–2059.69 0.00
0.48–0.57 0.86 7.81–9.30 3.06 126.87–151.01 5.66 2059.69–2451.63 0.00
0.57–0.68 0.76 9.30–11.07 2.84 151.01–179.75 4.71 2451.63–2918.16 0.00
0.68–0.81 0.73 11.07–13.18 2.51 179.75–213.95 3.33 2918.16–3473.45 0.00

Figures in each even column represent soil volume percentages supported by the size interval Ii=[ϕi− 1,ϕi] defined by the two neighbor figures in the
column on its left side.
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clay loam (6). Other textures were Loam (4), Silt loam
(4), Silty clay loam (2), Sand (2), Loamy sand (1) and
Sandy clay (1). Soils were under different management
systems at the time the samples were collected, i.e.,
cultivation, rotary grazing, grazing and forestry.

Soils were collected and transported in plastic bags to
the laboratory where they were dried at room temper-
ature, large clods in the air-dry state were broken, and
Fig. 3. The 70 soil samples considered in the paper represented inside a te
fractions).
sieved to separate coarse materials. Soil samples were
analyzed by laser diffraction after the aggregates were
dispersed by stirring and ultrasonics lasting 5 min.

3.2. Laser diffraction processing

Soil samples were analyzed with the laser diffraction
technique using a Longbench Mastersizer S (Malvern
xtural triangle (in percentages of soil volume by clay–silt–sand size



Table 2
Malvern equivalent intervals, normalized relative size (ri ) and volume
(pi) distributions for some USDA classes of particle sizes

Textural
fraction

Interval of
sizes (μm)

Malvern
equivalent
interval (μm)

Normalized
length of
interval (ri)

Normalized
relative
volume (pi)

Clay b2 0.05–2.3 0.001 p ¼ P22
1 pi

Silt 2–50 2.3–53.1 0.025 p ¼ P40
23 pi

Sand 50–2000 53.1–2059.7 0.974 p ¼ P61
41 pi

Very fine
sand

50–100 53.1–106.6 0.026 p ¼ P44
41 pi

Fine
sand

100–250 106.6–254.7 0.072 p ¼ P49
45 pi

Medium
sand

250–500 254.7–511.2 0.124 p ¼ P53
50 pi

Coarse
sand

500–1000 511.2–1026.1 0.250 p ¼ P57
54 pi

Very coarse
sand

1000–2000 1026.1–2059.7 0.502 p ¼ P61
58 pi
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Instruments, Malvern, England) that employs a 5-mW
He–Ne laser with a wavelength of 632.8 nm as a light
source. Measurements were taken covering the
interval of sizes 0.05–3474 μm. The laser beam is
diffracted by soil particles in different angles accord-
ing to their size. Light detectors receive the diffracted
light and data are collected as shown in Table 1.
Histogram data are produced from each analysis that
represent relative volume (%) vs. soil particle
diameter (μm) across 64 size subintervals. For
instance, for the sample processed in Table 1,
Fig. 4. Regions obtained by grouping th
0.01% of the total volume of measured soil particles
corresponds to particles with diameters between 0.08
and 0.10 μm.

Fig. 3 displays the 70 samples inside a textural
triangle in which each sample is represented by the
percentages of soil volume carried by the clay–silt–sand
class sizes.

3.3. Computing the BE-indices

The laser diffraction technique supplies a fixed non-
uniform partition of the size interval I=[0.05, 3473.5]
(μm) into 64 sub-intervals Ii=[ϕi− 1, ϕi], i=1, 2, …, 64,
whose endpoints satisfy logϕi–logϕi− 1≃constant (see
Table 1 for the entire sequence ϕi). While the first
interval is I1= [0.05, 0.06], with length 0.01 μm, the last
interval is I64= [2918.2, 3473.5], with length 555.3 μm.
The raw data produced by the apparatus are relative
volume values V1, V2, …, V64, expressed as percentages
of the total volume, i.e.,

P64
i¼1Vi ¼ 100, corresponding

to the 64 subintervals of sizes. The value Vi corre-
sponding to subinterval Ii is the percentage of total soil
volume contributed by particles with diameters within Ii
(see Table 1).

In the present analysis, we considered the interval of
particle sizes I=[0.05, 2059.7] (μm), corresponding to
61 – out of the 64 – size intervals, that we call “the
Malvern partition”. Notice that this produces a highly
non-uniform size partition, that fits well into the BE
theory. The associated relative volumes Vi, i=1, 2,…, 61,
e BE_3 values for the 70 samples.



Fig. 5. Regions obtained by grouping the BE_7 values for the 70 samples.
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were normalized to define the volume–size distribution

pi ¼ ViP61
i¼1 Vi

. The lengths of intervals (ϕi–ϕi− 1) were

normalized to [0, 1] to represent sizes in relative terms.
As above, ri denotes the normalized length of the interval

Ii, so that
P61

i¼1ri ¼ 1.

Normalized relative volumes pi corresponding to
adjacent subintervals can be added to obtain the
Fig. 6. Regions obtained by grouping the
normalized relative volume of a larger interval of sizes.
Because of the particular structure of the Malvern
partition, standard particle size classes, say the clay
fraction, can be obtained only approximately. Thus,
using raw data from laser diffraction analysis, the
interval of sizes equivalent to the clay fraction is Iclay=
[0.05, 2.3], which is obtained as the union of the first
22 subintervals given by the Longbench Mastersizer.
Normalized relative volume corresponding to the clay
BE_61 values for the 70 samples.



Fig. 7. Regression analysis for the indices BE_3 and BE_7. Fig. 9. Regression analysis for the indices BE_7 and BE_61.
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fraction (pclay) is in turn given by pclay ¼ P22
i¼1 pi. The

Malvern equivalent size intervals, normalized relative
volumes (pi) and normalized length of intervals (ri)
corresponding to other USDA classes of particle sizes
are shown in Table 2.

To perform an inter-scale BE-analysis of our textural
data, we calculate the BE-index using Eq. (2) for three
different partitions:

i) The partition ∏3 defined by dividing the interval
of sizes I into the 3 Malvern classes equivalent to
clay–silt–sand in the USDA particle sizes
classification.

ii) The partition ∏7 obtained by partitioning I in
7 classes: the Malvern equivalent with clay–silt–
very fine sand–fine sand–medium sand–coarse
sand–very coarse sand following USDA particle
sizes.
Fig. 8. Regression analysis for the indices BE_3 and BE_61.
iii) The Malvern 61-partition, i.e. the full partition
into 61 size intervals obtained from Longbench
Mastersizer S as described above.

Notice that the Malvern partition refines∏7 which in
turns refines∏3. The BE values obtained from the three
partitions defined above were denoted by BE_3, BE_7
and BE_61, respectively.

4. Results and discussion

The computed values of the BE_3 index for the 70
analyzed soil samples are represented in Fig. 4 within
the textural triangle and grouped in regions.

Notice that the textural triangle is defined in terms of
clay–silt–sand volume fractions rather than in terms of
the usual mass fractions. Figs. 5 and 6 display similar
regions classified according to the values of the indices
BE_7 and BE_61. The high values of BE – around 0.93
– at the rightmost corner in each figure correspond to a
soil sample with 94% sand content.

A shift to larger values of the BE_61 index for each
sample is apparent, indicating that, at smaller scales, the soil
volume is distributed more uniformly across class sizes.

It is significant that Figs. 4, 5 and 6 display the same
qualitative representation. This implies that the three BE
indices render the same ordered classification of the
sample, and in turn that the fineness of the partition
appears unimportant for comparative purposes. This
enhances the role of the simpler BE_3 as a parameter to
characterize textures. To establish this claim more
consistently, we run regression analyses between the
three indices. These are shown in Fig. 7 (BE_7 vs. BE_3),
Fig. 8 (BE_61 vs. BE_3) and Fig. 9 (BE_61 vs. BE_7).

A remarkable positive correlation between indices
is evident in all three plots, with the relationship



Fig. 10. A 16-subsample represented inside the textural triangle with
their corresponding BE_3 attached.
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BE_61 vs. BE_7 displayed in Fig. 9 being the most
linear. The claimed increase in the index values when
considering finer partitions is also evident from the
figures.

These facts, namely (a) the observed systematic
increase in index values when the partition is refined,
and (b) the three computed indices comparing textures in
the samemanner, are by nomeans obvious. As explained
in Section 2, when (a) occurs this is a symptom of a more
uniform distribution of the soil volume across different
class sizes when size resolution increases. Also, (b) may
or may not be the case, as the following simple example
proves. Consider N=2, a uniform partition ∏1 com-
posed of [0, 0.5] and [0.5, 1], and the finer partition ∏2

defined by the class intervals [0, 0.5], [0.5, 0.75] and
[0.75, 1]. Denote for the time being by BE(P(∏)) the BE
index of a ∏-quantized distribution P. If P and P′ are
distributions such that their ∏1-quantizations are
(0.4, 0.6) and (0.5, 0.5), respectively, we have that
the ordering BE(P(∏1)) =0.97b1=BE(P′(∏1)). Be-
Fig. 11. Inter-scale analysis of BE for a sample: means and standard dev
sides, if their corresponding ∏2-quantizations are
(0.4, 0.3, 0.3) and (0.5, 0.0.5), it turns out that BE
(P(∏2)) = 0.71N0.67=BE(P′(∏2)), giving the re-
versed order.

In order to illustrate the use of the BE index to test the
continuity of the relative volume–size distributions, a
subsample of 16 soils was selected. This subsample was
chosen to cover a wide region inside the textural triangle
so that the corresponding BE_3 index values ranged
from 0.45 to 0.94 (see Fig. 10).

The BE index was computed for the three partitions
defined above and for an intermediate partition with 9
subintervals, finer than∏7. The values of the BE indices
for each sample increased with the refinement of each
considered partition. Fig. 11 shows the mean values of
the four BE indices together with their standard
deviations.

The increase in the mean BE value is more
pronounced when the refinement of the partition is
finer. For instance, the average increases when passing
from ∏3 to ∏7 in 0.037, whereas from ∏7 to the 61-
Malvern partition it goes up by 0.22. As explained in
Section 2, this behavior is compatible with the
continuity of the distribution — the BE index
approaching 1 as the partition gets finer. The index
values obtained for the 61-Malvern partition, however,
might be thought not to be close enough to 1. This
fact may be due to the huge disparity in interval
lengths of the Malvern partition (the ratio length (I61)/
length (I1) being equal to 32928). In order to test
further the continuity of the distribution, only the first
21 size classes of the Malvern partition were
considered by analyzing the distribution within the
interval of sizes [0.05, 194] (μm). The ratio length
(I21)/length (I1) is then only 31. The distribution of
relative volumes inside the new smaller size interval is
normalized and the associated BE index (BE_21) are
iations of BE indices computed for different partition represented.
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computed for the 16-subsample. The results are shown
in Fig. 11. A substantial increase in the BE index is
apparent for every sample, with the mean values of
BE_21 approaching unity (indeed, the mean value is
0.948 and the standard deviation is 0.0184). These
results are consistent with the volume–size distribu-
tions being continuous within the size interval [0.05,
194].

5. Conclusions

The balanced entropy (BE) – obtained from the
standard clay–silt–sand soil fraction content – was
proposed in Martín et al. (2005) to characterize soil
texture. Balanced entropy, however, is a flexible
parameter that can be computed for an arbitrary partition
of the interval of soil particle sizes. The behavior of BE
with respect to the considered partition was addressed in
this paper. In particular, the theoretical properties of the
BE index were considered when the partition is refined,
and the relationship between extreme values of this index
and the nature of the underlying distribution was
discussed. The variations of BE when refining the
scale were explained in terms of the uniformity in the
mass spreading. Also, it was argued that, for continuous
distributions, the BE index values approaches unity as
the partition gets finer.

The methodology was applied to a sample of 70 soil
samples from the Iberian Peninsula. Significant conclu-
sions that can be drawn from the analysis are as follows.
First, for all samples the soil volume is more uniformly
distributed across sizes when smaller scales are
considered. Secondly, different BE indices – i.e.
computed with respect to different partitions – play a
role qualitatively similar as a parameter for comparing
textures. Third, the continuous nature of the relative soil
volume–size distribution cannot be discarded from the
analysis.

As a general conclusion, balanced entropy is shown to
be a useful tool to scrutinize the spreading of a given
mass distribution within different scales — associated
with size partitions. In turn, different BE indices may be
used as textural indicators supplying inter-scale infor-
mation when appropriately disaggregated soil data is
available.
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Appendix A. Basic quantization properties of
balanced entropy

José-Manuel Rey3,4

Summary. Some basic quantization facts for the bal-
anced-entropy index, introduced by Martín et al. (2005) are
derived from theory. Specifically, mechanisms for mass
partitioning are described that are consistent with the increase
or decrease of index values when refining the size partition.
Variations in index values are shown to respond to the
uniformity of the mass spreading. A key result is that the index
values approach one when the partition size goes to zero.
Also, values of the index approaching a constant between 0
and 1 are shown to be consistent with an underlying fractal
distribution.

Shannon's entropy has been successfully established
in different fields as a useful heterogeneity index of a
probability distribution. Balanced entropy is a natural
generalization of Shannon's entropy introduced by
Martín and Rey5 as a measure of the evenness of a
distribution with respect to a range of unevenly
classified sizes. Consider the unit interval [0, 1] as the
(normalized) interval of sizes and let ∏={Ii} be a
(finite) size partition of [0, 1], that is, ⋃i Ii=[0, 1] and
Ii⋂Ij=∅ for different i and j. Given a mass distribution
P defined on the size interval, the partition ∏ induces a
discrete distribution ( pi) defined by the probability
vector pi=(P(Ii)) that we call ∏-quantization6 of P. Let
BE(∏) denote the value of the balanced-entropy index
for the quantizing partition ∏:

BEð∏Þ ¼
P

PðIiÞlogPðIiÞP
PðIiÞlogri ; ðA1Þ

where ri is the length of the size interval Ii. Note that
∑ri=1, so that (ri) defines a probability distribution on
the integer set {1, 2, …, #∏}. The notations H(∏) or E
(∏) will be used when necessary. The value BE(∏)
depends on the partition∏. Privileged partitions do exist
in some contexts. As an important example, for the
classification of soil textures, the induced partition when

mailto:jan@ccee.ucm.es
mailto:jan@ccee.ucm.es
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using the standard USDA system is defined by
r1= rclay=0.001, r2= rsilt =0.024, and r3= rsand=0.975
(see Soil Conservation Service, 1975). The value BE(∏)
may be thought of as a measure of distance from P to the
uniform distribution defined in ∏, for which each size
interval gets a probability mass equal to its length (see
Martín et al., 2005). In general, considering different
partitions and computing the associated BE index gives
significant information on the mass spreading of the
distribution at different scales. As it is shown below
(Claims 4 and 5), the index value may increase or
decrease when the partition is refined. In this note basic
mechanisms for the redistribution of the mass are
formulated that are compatible with an observed
increase or decrease of the index when the partition is
refined.

For any distribution and partition, the index BE takes
values in [0, 1]. First the occurrence of extreme values of
BE is considered.

Claim 1. BE(∏)=0 for any partition ∏ ⇔ The
distribution P is a Dirac delta, i.e. the whole probability
mass is concentrated at some size r0.

It is clear that BE(∏)=0 if and only ifH(∏)=0 which
occurs if and only if the∏-quantized distribution satisfies
P(Ii)=1 for some Ii. This fact occurs for every partition if
and only if P is a Dirac delta, thus implying Claim 1.

The diameter of a partition ∏={Ii} is defined as
diam∏=max {length(Ii)}.

Claim 2. If P is discrete – a (finite) sum ofDirac deltas–
i.e.P=∑miδriwith∑mi=1 and δri is a unit mass located at
ri, then BE(∏)→0 as diam∏→0.

For any sufficiently fine partition∏, we have H(∏)=
−∑milogmi=constant, whereas E(∏) tends to infinity as
diam∏ goes to zero. As a consequence, Claim 2 follows.

Claim 3. BE(∏)=1 for any partition ∏⇔P is the
uniform distribution.

The assertion BE(∏) = 1 can be rewritten asP
pilog

pi
ri
¼ 0. This means that the Kullback–Leibler

distance between the ∏-quantized distribution ( pi) and
the size distribution (ri) is zero. This occurs if and
only if pi= ri (see Cover and Thomas, 1991). Since
this is true for any arbitrary partition, P is the uniform
distribution.

Next the response of the index BE is analyzed when
the partition is refined. A partition ∏′ refines or is finer
that another partition∏ (denoted by∏≺∏′) if its class
intervals are either class intervals of ∏ or are
subintervals of some class interval of ∏. It is well-
known that the Shannon entropy index H does not
decrease when the partition is refined. That is, H(∏)≤H
(∏′) if ∏≺∏′ (see e.g. Gray, 1990). Also, the value of
E increases when the partition is refined. To see this,
consider a particular case when ∏′ is obtained from ∏
by partitioning just one class interval I of length r of ∏
into two subintervals, I1, I2, of lengths r1 and r2= r− r1.
Without loss of generality, assume that 0br1V

r
2
. Assume

also that the underlying distribution P splits the
probability p=P(I) into p1=P(I1) and p2=P(I2)=p−p1.
Since − (p1+p2) log r≤−p1log r1−p2log r2, we have
that E(∏)≤E(∏′) in this case. This can be extended to
prove that, in general, E(∏)≤E(∏′) if ∏≺∏′. Since
both H(∏) and E(∏) increase, the value of BE(∏)
may or may not increase when ∏ is refined. This
depends on how the relative variations of both quan-
tities compare when ∏ is refined: it is easy to check
that

BEð∏ÞVBEð∏ VÞfHð∏ VÞ−Hð∏Þ
Hð∏Þ z

Eð∏ VÞ−Eð∏Þ
Eð∏Þ :

ðA2Þ

As a consequence, the general mechanism in the
mass spreading, producing an increase in the index BE,
consists in redistributing the probability mass within
finer partitions in such a way that the relative increase of
the entropy exceeds that of E — the average of the
logarithms of interval sizes. As shown next, however, a
highly non-uniform spreading of the probability mass
inside the finer partition ∏′ is compatible with a
lowering of the value of BE(∏).

Consider again the case when∏′ is obtained from∏
by partitioning a class interval I of length r into two
subintervals, I1, I2, of lengths 0b r1b r / 2 and r2= r− r1.
Let p=P(I ) and p1=P(I1) and p2=P(I2)=p−p1.

Claim 4. For any∏′ refining∏ as above so that p1=0,
BE(∏′)bBE(∏).

This follows from Eq. (A2) above since H(∏′)=H
(∏) and E(∏′)NE(∏).

If the mass spreading across the subintervals I1 and I2
is uniform the value of the index BE goes up. This is the
content of

Claim 5. For any∏′ refining∏ as above, in such a way
that the mass splitting ( p1, p2) is uniform, that is, p1 ¼
p r1

r and p2 ¼ p r−r1
r ¼, we have BE(∏′)NBE(∏).

To check Claim 5, denote, d ¼ r1
r for convenience.

After some algebra:

BEð∏ VÞ ¼ Hð∏Þ þ p logp−d plogðd pÞ−ð1−dÞplogðð1−dÞpÞ
Eð∏Þ þ plog r−d plogðdrÞ−ð1−dÞplogðð1−dÞrÞ

¼ Hð∏Þ þ pf−dlogd−ð1−dÞlogð1−dÞg
Eð∏Þ þ pf−dlogd−ð1−dÞlogð1−dÞg ¼ HðjÞ þ pH2ðdÞ

EðjÞ þ pH2ðdÞ ;
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where H2(δ)=−δ log δ− (1−δ) log(1−δ) is the Shannon
entropy of the distribution (δ, 1−δ). Since H2(δ)N0, it is
always the case that7

BEð∏ VÞ ¼ Hð∏Þ þ pH2ðdÞ
Eð∏Þ þ pH2ðdÞ N

Hð∏Þ
Eð∏Þ ¼ BEð∏Þ;

which implies Claim 5.
An arbitrary refinement of a partition ∏ can be

obtained in successive steps. At each step, some size
interval of length r is partitioned into two subintervals of
lengths r1 and r− r1, according to a choice of the
parameter d ¼ r1

r
(0bδb1/2). Refining ∏ in this way

amounts to selecting a sequence of δ's, one for each step
in which an original interval is split in two. For a
sequence of refining partitions with decreasing dia-
meters, a partitioning rule consists of selecting – at each
partitioning step – some δ, 0bδb1/2. The next one is a
key result concerning the behavior of the index BE
when partitions are refined.

Claim 6. If P is a distribution with a continuous
probability density, then BE(∏)→1 as diam∏→0,
provided that the partitioning rule satisfies δNδ0N0.

Let ∏1={Ii
1: i=1, 2, …, N} be an initial partition of

[0, 1] and let (pi
1 =P(Ii

1)) be the induced ∏1-quantized
distribution. Consider some sequence of nested parti-
tions {∏k}, where,∏k+1 refines∏k for each k. Since the
diameter of ∏k goes to zero as k increases, we may take
∏k+1 as a refinement of ∏k obtained by dividing each
class interval Ii

k of ∏k – using a partitioning rule δi
k –

into two subintervals (that are themselves class intervals
of∏k+1). Since P has a continuous probability density, it
can be assumed that∏1 is fine enough so that the masses
(pi

1) will be split nearly uniformly inside the class
intervals of the new partition ∏2. This means that each
new class interval gets a probability mass approximately
proportional to its length, as stated in Claim 5.

In the first step – in which each class interval of∏1 is
divided into two using partitioning rules δi

1 –, repeating
the procedure used in the proof of Claim 5 gives:

BEðj2ÞcHð∏1Þ þ p11H2ðd11Þ þ p12H2ðd12Þ þ N þ p1NH2ðd1N Þ
Eð∏1Þ þ p11H2ðd11Þ þ p12H2ðd12Þ þ N þ p1NH2ðd1N Þ

:

using the fact that BE depends continuously on the pi so
that the value of BE(∏2) is only approximately equal to
the expression above. Since the partition rule is bounded
from below by δ0 and H(δ) is continuous and increasing
7 The fact that aþx
bþxN

aþy
bþy , xNy for non-negative a,b,x,y, abb, b≠0,

is often used. Take y=0 here.
for 0bδb1/2, it holds that H2(δi
1)NH2(δ0) for any i.

Therefore (see footnote 3),

BEð∏2ÞNHð∏1Þ þ H2ðd0Þ
P

p1i
Eð∏1Þ þ H2ðd0Þ

P
p1i

¼ Hð∏1Þ þ H2ðd0Þ
Eð∏1Þ þ H2ðd0Þ

Repeating the argument for partition ∏2 – using
partitioning rules δi

2 and calling P(Ii
2)=pi

2 – gives

BEðj3Þc
Hð∏2Þ þ

P
i ¼ 1

2N

p2i H2ðd2i Þ

Eð∏2Þ þ
P
i ¼ 1

2N

p2i H2ðd2i Þ

¼
Hð∏1Þ þ

P
i ¼ 1

N

p1i H2ðd1i Þ þ
P
i ¼ 1

2N

p2i H2ðd2i Þ

Eð∏1Þ þ
P
i ¼ 1

N

p1i H2ðd1i Þ þ
P
i ¼ 1

2N

p2i H2ðd2i Þ

N
Hðj1Þ þ H2ðd0ÞRip1i þ H2ðd0ÞRip2i
Eð∏1Þ þ H2ðd0ÞRip1i þ H2ðd0ÞRip2i

¼ Hð∏1Þ þ 2H2ðd0Þ
Eð∏1Þ þ 2H2ðd0Þ :

Repeating the argument for partition ∏k+1,

BEð∏ kþ1ÞN
Hð∏1Þ þ kH2ðd0Þ
Eð∏1Þ þ kH2ðd0Þ

The terms on the right hand side form an increasing
sequence accumulating at unity. This argument justifies
Claim 6. It also works when P has a density which is
continuous only in a small interval I. Claim 6 is thus also
valid for continuous densities with a high-peak and very
small standard deviation. The rate of convergence of BE
to 1 – when the diameter of the partitions goes to zero –
may thus be used to differentiate between different
continuous distributions. Moreover, if P has non-trivial,
singular and continuous parts, it will also result in a BE
index approaching 1 when the partition is fine enough
within the support of the continuous part. It follows from
Claim 6 that a necessary condition for BE to approach a
value db1 is that P be purely singular (e.g. fractal).

Since BE≈1 for distributions with continuous densi-
ties whereas BE≈0 for nearly discrete distributions, it
may be thought that observing that BE approach
intermediate values corresponds to more complex
singular distributions. It may well happen that a certain
sequence BE(∏k) stabilizes around some value fixed
value d. This is actually the case for fractal (selfimilar)
distributions. This claim can be illustrated with a standard
Cantor distribution P, defined in the following way.
Consider a partition ∏1 of [0, 1], select its first and last
subintervals, call them I1=[0, r1], I2=[1−r2, 1], and
spread the probability mass by P(I1)=p1, and P(I2)=p2,
p1+p2=1. Repeat the same procedure inside I1, and I2,
i.e., define P(I1, 1)=p1p1, P(I1, 2)=p1p2, P(I2, 1)=p2p1, P
(I2, 2)=p2p2, where, for j=1, 2, Ii,,j is a subinterval of Ii
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with length (Ii,,j)=rirj. Let ∏2 be any partition of [0, 1]
containing the subintervals Ii,j. At the k-th stage of the
construction, there are 2k subintervals Ii1, i2, …, ik, such that
P(Ii1, i2, …, ik)=pi1pi2 … pik and length (Ii1, i2, …, ik)=ri1ri2 … rik,
ij=1,2.Let∏kbeanypartitionof [0, 1] containing Ii1, i2,…, ik
as class intervals. A computation gives

BEð∏kÞ ¼
P

i1;i2; N ;ik
pi1pi2: : :pik logðpi1pi2: : :pik ÞP

i1;i2; N ;ik
pi1pi2: : :pik logðri1ri2: : :rik Þ

¼ kðp1logp1 þ p2logp2Þ
kðp1logr1 þ p2logr2Þ

¼ p1logp1 þ p2logp2
p1logr1 þ p2logr2

ud;

so thatBE(∏k) is the constantd for every k. It is remarkable
thatdalsogives theentropy fractal dimensionof theCantor
distribution.This isa consequenceofageneral resulton the
dimensionof self-similar fractal constructions (Deliu et al.,
1991). To illustrate this fact with a popular example, take
p1=p2=1/2 and r1= r2=1/3. This implies BE(∏k)
=d=log2/log3which is the well-known fractal dimension
of the classical Cantor set and the natural Cantor
distribution (see e.g. Falconer, 1990).

Invoking continuity of the index BE with respect to
the probabilities pi, the following general working
principles are justified from the facts above:

#1. Small values of the index BE are consistent with P
being nearly discrete.

#2. A lowering in the value of BE when the partition
is refined is consistent with the measure spread
being far from uniform (some size interval getting
no mass in the splitting).

#3. Near to one values of the index BE are consistent
with P nearly uniform.

#4. An increase in the value of BE when the partition
is refined is consistent with the measure spread for
the new partition being close to uniform (every
class interval nearly getting the mass share
proportional to its size),

#5. Computed BE values approaching one when
partitions are refined is consistent with an
underlying distribution with continuous density.

#6. ComputedBEvalues approaching a certain positive
value d below one when partitions are refined is
consistent with an underlying fractal distribution.
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