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Abstract

We construct an alternative theoretical framework for stochastic dy-

namic programming which allows us to replace concavity assumptions

with more �exible Lipschitz continuous assumptions. This framework

allows us to prove that the value function of stochastic dynamic program-

ming problems with discount is Lipschitz continuous in the presence of

nonconcavities in the data of the problem. Our method allows us to treat

problems with noninterior optimal paths. We also describe a discretiza-

tion algorithm for the numerical computation of the value function, and
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we obtain the rate of convergence of this algorithm.

Keywords: Dynamic programming; nonconcavities; renewable resources;

nonsmoothness; increasing marginal returns.

1 Introduction

In this paper we complete the treatment of problems of stochastic dynamic

programming with discount in a framework of Lipschitz continuous hypothesis

on the data of the problem.

Dynamic programming with discount provides a setting for the analysis of

optimal intertemporal transfers of economic resources. There is assumed the

existence of a central planner who tries to maximize, over all feasible currents

c1; c2; c3::: of future consumptions,
P1

i=1 �
iER(ci); where ER(ci) is the ex-

pected return at period i derived from consumption ci and � 2 (0; 1) is the

discount factor (see Section 2 for a full exposition of the problem). Typically

R is a monetary bene�t or some subjective utility which summarizes the cen-

tral planner�s objective, and � re�ects the willingness to substitute between

present and future return. Some of the principal models in today�s Macroeco-

nomic theory as described by Ljungqvist and Sargent [13] are expressible in

this framework. Also, many problems at the microeconomic level are currently

treated in this setting (see [19]), in particular, problems of optimal exploitation

of renewable resources (see Example (10)).

The standard theory of dynamic programming with discount relies heavily

on the concavity of the data of the problem (i.e., state space, return function
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and technological constraint correspondence). It �rst requires compactness and

continuity of the data in order to guarantee the existence, uniqueness and con-

tinuity of the value function. Concavity, smoothness and monotonicity are then

required in order to guarantee the smoothness and numerical computability of

the value function and the optimal policy correspondence. In the deterministic

case, these assumptions also guarantee that for discount factors close to 1 the

optimal paths converge to an equilibrium state (the so-called turnpike theory).

Another standard assumption is to require always interior optimal paths; this al-

lows the recursive computation of the optimal policy through Euler equations.

See Stokey et al. [19], Chapters 4, 9, for a detailed analysis of the standard

theory.

There are, however, economic and environmental problems that present non-

concavities. Empirical evidence regarding this is given below. See also Maroto

and Moran [15] for a discussion of the literature on these problems. The stan-

dard assumptions, with the exceptions of compactness and continuity, fail in

this setting. The value function can be nonconcave and nonsmooth, and even

the numerical analysis lacks a theoretical basis, since no rate of convergence of

the algorithms can be obtained from the standard theory.

In Maroto and Moran [15], we construct an alternative theoretical frame-

work based solely on the general hypothesis of Lipschitz continuity of the data.

We compute useful information regarding these problems in the case of always

interior optimal plans, a case that is relevant in problems of economic growth

and in problems of exploitation of renewable resources in which a null or a total
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consumption is always suboptimal.

There are, however, problems in which the optimal choices for early transi-

tions may be non-interior, whereas the optimal selections are interior at some

later transitions. We shall refer such cases as eventually interior optimal plans.

Examples of this situation are provided by problems of optimal exploitation of

renewable resources in which, due to the presence of increasing marginal returns,

it might well be optimal to let the resource grow freely for some periods and

then to carry out a large harvesting. In these cases, the optimal policies might

be in fact cyclical with periods of null harvesting (see Examples in Section 5).

In this paper we extend the results in Maroto and Moran [15] to the case of

eventually interior optimal plans. We establish conditions of Lipschitz continu-

ity on the data (Section 2.2) of a standard discounted dynamic programming

problem, in a stochastic setting. Our main result is that in such a setting the

value function is Lipschitz continuous (Section 3). This establishes a basis for

an analytical study of these problems through the tools of nonsmooth analy-

sis. Our �rst application of the Lipschitz continuity of the value function of

the problem is to show that the discretization algorithm for the computation

of the value function derived from this theory converges with a rate O(�), with

� being the maximum diameter of the simplices of the discretization net. We

then test the robustness of our results via the application of the algorithm to

the study of the optimal management of a renewable resource (Section 5). We

show that nonconcavities in the data of the problem can lead to conclusions

di¤ering dramatically from those of the standard theory. In particular, cycles
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may exist in the optimal policy dynamics instead of there being a steady state

equilibrium.

Research to which the results in this paper can be applied includes studies of

the optimal exploitation of schooling species, especially clupeids. Bjørndal and

Conrad [2] estimated a harvest function for North Sea herring and they found

increasing marginal returns (nonconcavities). Similar results were found earlier

by Hannesson [10] for the North Atlantic cod �shery. See also references in

Examples (Section 5). The schooling species gather in large banks (schools), a

behavior which reduces the e¤ectiveness of predators (Partridge [18]). Schooling

behavior and the modern �sh-�nding technology incorporated in �shing vessels,

make e¢ cient localization and harvesting of these species possible. This gives

rise to a non-concave net revenue function. See Dawid and Kopel [6, 7] for the

optimal exploitation of a renewable resource subject to a convex return function.

A second �eld where the results of this paper �nd natural application is that

of optimal exploitation of renewable resources with a nonconcave growth func-

tion that exhibits depensation (�S-shaped�). According to Clark [5], schooling

behavior may give rise to such cases. See also Clark [4], Majumdar and Mitra

[14], Dechert and Nishimura [8], Le Van and Dana [12], and Olson and Roy [17],

for treatment of these problems.
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2 Preliminaries

2.1 The optimization problem

We describe the stochastic dynamic optimization problem we deal. Let (X;X )

be a measurable space with X � Rn and let X be the ��algebra of Borel

subsets of X. The space X is assumed to be the domain of an endogenous

state variable x, and Z � Rm endowed with the ��algebra Bm of Borel subsets

of Z is the domain of a sequence z0; z1; z2; ::: of exogenous random shocks.

The state of the system at time t is therefore described by a vector (xt; zt)

taking values in the set S := X � Z: As a topological space, S is endowed with

the product topology, and as a measure space it is endowed with the product

��algebra. The technological constraints of the problem are represented by a

correspondence � : S ! X which speci�es the set �(xt; zt) of feasible states

xt+1: We shall write 
 for the graph of �; and consider on 
 the topology and

��algebra inherited from the product space X �X � Z.

Let the value z0 of the �rst random shock be known, and for t � 1 assume

that the sequence of random variables zt is a Markov stochastic process with

stationary transition function Q; which for z 2 Z ; A in the ��algebra Bm of

Borel subsets of Rm and t � 1, speci�es the conditional probability Q(z;A) that

zt 2 A given that zt�1 = z: This de�nes in a standard way, for z0 2 Z and t � 1,

the probability measure �t(z0; �) on the t�fold product space Zt = Z�Z�:::�Z

which speci�es the (conditional on z0) probabilities �t(z0; A) that the sequence

zt := (z1; z2; :::; zt) of the t �rst random shocks belongs to the sets A in the
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t-fold product ��algebra Btm:

Given z0 2 Z and x0 2 X; a planner faces the problem of �nding an optimal

plan, that is, a constant �0 and a sequence �1; �2; �3; ::::of measurable functions

�t := Z
t ! X which solves the problem of �nding the maximum

supfR(x0; �0; z0) +
1X
t=1

�t
Z
Zt
R(�t�1(z

t�1); �t(z
t); zt)�

t(z0; dz
t)g; (1)

where the supremum is to be taken over all plans satisfying the technological

constraints; � 2 (0; 1) is a discount factor; and R is the return function, de�ned

on the graph 
 of the correspondence �; so that R (xt; xt+1; zt) is the return at

time t if the state variable is set to be xt+1 at time t+ 1 and the current state

of the system is (xt; zt).

2.2 Assumptions

We describe the conditions required on the data in the above problem. See

Maroto and Moran [15] for full details on the scope of application of such con-

ditions, and several related properties. We �rst introduce some de�nitions and

notations

2.2.1 Lipschitz functions, correspondences and transition functions

Given a metric space (Y; d) and a point x 2 Y; we shall denote by U(x; r) and

B(x; r) respectively, the open ball and the closed ball centered at x with radius
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r:

Recall that a mapping between two metric spaces f : (Y; d) ! (Y 0; d0) is

said to be Lipschitz if it satis�es d0(f(a); f(b)) � Kd(a; b) for all a; b 2 Y and

some constant K. We shall write f 2 L(K) for such a mapping (or LA(K) if we

want to make explicit some subset A � Y for which the restriction to A of f is

Lipschitz). The function f is said to be locally Lipschitz on Y if for every x 2 Y

there exists a constant K and an open ball U(x; "); " > 0; such that f 2 L(K)

on U(x; "); and we write f 2 Lloc(K) ( LlocA (K)) if such condition holds on Y

(for f restricted to A � Y ).

A function v will be said to belong toBLY (�;K) (BLlocY (�;K)) if v 2 LY (K)

(LlocY (K)) and if on Y it is bounded by � (in the supremum norm).

We call L�convex a subset C � Rp which is a bilipschitz image of a convex

set.

The key property of L�convex sets is that a function locally Lipschitz on

such a set is also globally Lipschitz. The following lemma is easy to prove.

Lemma 1 Let C � S � Rp be an L�convex set and f a bilipschitz function

such that f(C) is convex, and let v: S ! R with v 2 LlocC (K). Then v 2

LC(�CK) with

�C = Kf�1Kf ; (2)

where Kf and Kf�1 denote respectively the Lipschitz constants of f and f�1:

Remark 2 If C is convex then we can set f = id; which shows �C = 1: It is

easy to see that in any case �C � 1 (see Maroto and Moran [15]).
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A correspondence � : (Y; d) ! (Y 0; d0) between metric spaces is said to

be a Lipschitz correspondence with Lipschitz constant K if D0
H(�(a);�(b)) �

KDH(a; b) for all a; b 2 Y; where D0
H and DH denote the Hausdor¤ metric on

(Y 0; d0) and (Y; d) respectively. We write in this case � 2 LY (K):

A compact, non-empty-set valued correspondence � : (Y; d) ! (Y 0; d0) is

said to be topologically continuous at x 2 Y if it is continuous at x and

D0
H(@�(x); @�(y))! 0 as y ! x; where @(�) stands for the topological boundary

operator. If � is continuous at all x 2 Y; then we say that � is a topologically

continuous correspondence.

We now de�ne Lipschitz continuous transition functions.

To this end we consider the metric d� in the set MZ of Borel probability

measure on the space Z of random shocks given by

d�(�; �) = sup

�����Z fd��
Z
fd�

���� : f 2 BLZ(�; 1)� :
For any positive � these are equivalent metrics, and the metric d1 is called

Fortet-Mourier distance (see Dudley [9]). If Z is a compact metric space, it is

enough to take the supremum over functions in LZ(1) in the de�nition of the

metric.

We say that the transition function Q is Lipschitz continuous with Lipschitz

constant K; and write Q 2 LZ(K), if d�(Q(z1; �); Q(z2; �) � Kd(z1; z2) holds for

all z1; z2 2 Z; where � is a constant to be speci�ed later (see 4).

We are now ready to formulate our assumptions on the data X;Z;R;�;
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and Q. See Maroto and Moran [15] for full details and some straightforward

consequences of these assumptions.

Assumption I: X is a closed subset of Rn and Z is a closed subset of Rm.

Assumption II: R is a real bounded function and R 2 L
(KR) for some

positive constant KR:

Assumption III: � is a topologically continuous correspondence and � 2

LS(K�) for some positive constant K�.

Assumption IV : Q 2 LZ(KQ) with KQ� < 1;KQ > 0:

Assumption V : O0 := fx 2 X : G(x; z) � int(�(x; z)) for all z 2 Zg is a

non-empty set. Here G is the optimal policy correspondence.

We give below the de�nition of such a correspondence and an extended

explanation of this assumption.

Assumption V I :The domain Z of the random shocks is a compact convex

subset of Rm:

Since X and Z are closed sets by Assumption I, so is S; which, therefore,

is also a complete metric space. Let BCS(�) denote the set of real continuous

functions on S bounded in supremum norm by the constant �. The Bellman

operator T; de�ned by

T (v(x; z)) = supfR(x; y; z) + �
Z
v(y; �)Q(z; d�) : y 2 �(x; z)g; (3)

preserves the set BCS of real continuous bounded functions on S; i.e. T :

BCS ! BCS ; and it is a contractive operator with respect to the supremum
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norm in BCS (see Stokey et al. [19], Chapter 9). It is easy to check that if

v 2 BCS(�) then Tv 2 BCS(k R k +��): Thus, under Assumptions I � IV ,

setting

� =k R k (1� �)�1 (4)

we have T : BCS(�)! BCS(�):

From now on � will have the value given by (4). There follows from the com-

pleteness of BCS(�) the existence of a unique V 2 BCS(�) such that T (V ) = V:

Moreover, if T k denotes the k�th iterate of T; then k T k(v)� V k! 0 for any

v 2 BCS , V being the unique value function of the optimization problem (1).

It is well known that the optimal policy correspondence G : S ! X; given

by

G(x; z) = fy 2 �(x; z) : V (x; z) = R(x; y; z) + �
R
V (y; �)Q(z; d�)g,

is a compact valued and u.h.c correspondence. For each v 2 BCS a maxi-

mizing correspondence Gv may be de�ned by

Gv(x; z) = fy 2 �(x; z) : Tv(x; z) = R(x; y; z) + �
R
v(y; �)Q(z; d�)g.

Observe that, as a consequence of the Theorem of Maximum (see Stokey et

al. [19], Theorem 3.6), Gv is a u.h.c. and compact valued correspondence.

Assumptions I to IV are the basic set of assumption for Lipschitz continuous

dynamic programming. Assumption V is a rather weak requirement meaning

that there are some states xt of the system from which the optimal state xt+1

is not an extremal one. For instance, in the setting of exploitation of renewable
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resources, this means that the optimal selection for the next period is neither

the resource grow freely without consumption nor the total consumption of the

resource.

In [15] the case of an always interior optimal plan was analyzed. This case

arises when the whole state space considered is contained in the set O0 described

in Assumption V; so that the extremal selections belonging to @�(x) are always

suboptimal. This analysis does not require Assumption V I:

In the next section we shall extend our study to the case when the optimal

plans are not always interior, but are eventually interior. In the setting of opti-

mal exploitation of renewable resources this means that it might be optimal to

let the resource grow freely at some periods, but it will be eventually optimal to

carry out a positive consumption which moreover does not exhaust the resource.

3 Lipschitz regularity of the value function

We �rst state some results obtained in Maroto and Moran [15] that are to be

used in the proof of the main result in this section, Theorem 8.

The analysis of the case of always interior optimal plans was based on the

study of the Lipschitz constants of the iterates T kv under the Bellman operator

T of functions v in BCS . This is given by the following lemma

Lemma 3 Let v 2 BCS and v 2 L(M0);M0 � 0: Then, under Assumptions
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I� IV; Tv 2 L(M1) holds, with

M1 = KR(1 +K�) + maxf1;M0g�KQ +M0�K�: (5)

See the proof in Maroto and Moran [15].

This lemma shows that the Lipschitz constantsMk of the iterates T kv satisfy

the di¤erence equation

Mk = KR(1 +K�) + maxf1;Mk�1g�KQ +Mk�1�K�: (6)

We shall need below the following specialization of Lemma 3.

Lemma 4 Let (x; z); (x0; z0) 2 S with k (x; z) � (x0; z0) k� �
K�

and assume

that, for v 2 BCS ; T v(x; z) � Tv(x0; z0) holds. Assume that we only know that

v 2 L(M0) on a cylinder B(y; �)� Z, where y satis�es

Tv(x; z) = R(x; y; z) + �

Z
v(y; �)Q(z; d�):

Then

j Tv(x; z)� Tv(x0; z0) j�M1 k (x; z)� (x0; z0) k

with M1 as in (5).

Proof. Since � 2 L(K�) we may �nd an y0 2 �(x0; z0); with k y � y0 k� K� k

(x; z) � (x0; z0) k� �; so y0 2 B(y; �) and, since (y0; �) 2 B(y; �) � Z for all
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� 2 Z; we have

v(y; �) � v(y0; �) +M0K� k (x; z)� (x0; z0) k;

and

�

Z
v(y; �)Q(z; d�) � �

Z
v(y0; �)Q(z; d�) +M0K�� k (x; z)� (x0; z0) k;

and the proof is completed, since this is exactly the property of v used in the

proof of Lemma 4 in [15] (see the chain of inequalities (8)).

The next theorem gives the Lipschitz continuity of V in the case of always

interior optimal plans. It is the main result of [15]. We recall it here since we

use it in the proof of Theorem 8

Theorem 5 Let C � S be a compact set and assume that

G(x; z) � int(�(x; z)) for all (x; z) 2 C: (7)

Let Assumptions I� IV hold. Then V 2 LlocC (�;K); with K = maxf1;KR(1�

�KQ)
�1g: Let w 2 BLS(�;M0), for some given constant M0, and let  > 0.

Then there exists a j0() such that T jw 2 BLlocC (�;K + ); j > j0(): If C is

an L�convex set, then V 2 BLC(�;�CK) and T jw 2 BLC(�;�C(K + )); all

j > j0(); with �C given by (2).

We shall also use the following lemma in the proof of Theorem 8.
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Lemma 6 i) If BCS is endowed with the supremum norm topology and BCS�S

is endowed with the product topology, then the correspondence G� : BCS � S

! X de�ned by G�(v; c) = Gv(c) is upper hemi-continuous.

ii) Assume that C � S is a compact set satisfying (7). There exists an

open ball U(V ); centered at V; of the normed space BCS ; such that Gv(x; z)

� int(�(x; z)) holds if (x; z) 2 C and v 2 U(V ).

See proof in Maroto and Moran [15].

This lemma shows that the correspondence Gv (see de�nition in Section 2.2)

satis�es on C the condition required of G in the statement of Theorem 5 for v

to be a small perturbation of V .

3.1 Eventually interior optimal plans

We are now ready to analyze the Lipschitz regularity of the value function on

the set of starting points for optimal plans that may proceed through extremal

endogenous states in their initial stages, but which have only interior selections

after some future stage. As pointed out in Section 1, this case is relevant in the

exploitation of renewable resources in which, due to the presence of increasing

marginal returns, it might be optimal to let the resource grow freely for some

periods and then to carry out a large harvesting. Optimal cyclical harvesting

falls into this case.

Assumptions I � V I are supposed to hold in the remaining of this section

Our �rst step is the following Lemma

Lemma 7 O0 is an open set.
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Proof. Assume that O0 is not an open set. Then for some x 2 O0 there exist

sequences xn ! x, zn 2 Z and yn 2 G(xn; zn)\ @(�(xn; zn)) 6= ;, in which @(�)

denotes the topological boundary operator. Since Z is a compact set, we may

assume zn ! z 2 Z and, therefore, (xn; zn) ! (x; z): Using that � is topolog-

ically continuous we get @(�(xn; zn)) ! @(�(x; z)) (in the Hausdor¤ metric).

Since yn 2 @(�(xn; zn)); we see that d(yn; @(�(x; z)) ! 0: By compactness we

may choose a subsequence ynk ! y 2 @(�(x; z)): This contradicts the upper

hemicontinuity of G which demands that y 2 G(x; z) � int(�(x; z)):

We inductively de�ne the sets

Ok = fx 2 X : G(x; z) � Ok�1 for all z 2 Zg; k = 1; 2; 3:::

Z : X ! S, de�ned by Z(x) = (x;Z), is a continuous correspondence (see

note 1). Therefore, the correspondence G := G � Z is upper hemi-continuous

(see Hildenbrand [11]), and so is G
k
. Since Ok = fx : G

k
(x) 2 O0g (see note 2)

we see that Ok; k = 1; 2; 3; are open sets and O! := ([1k=0Ok) is also an open

set. Notice that O! consists of the set of endogenous states from which any

optimal plan admits only interior selections at some stage.

With these tools in hand, we are ready to state and prove the main result

of this section:

Theorem 8 Let Assumptions I � V I hold. There exist constants Mk; k =

0; 1; 2; ::: such that:

i) If Y � [kj=0Oj is a compact set and w 2 BLS(�;M), for some given

constant M , then there exists a constant " > 0 and an integer j0 such that T jw;
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for all j � j0, and V; belong to BL(�;Mk) on any cylinder B(x; ") � Z with

x 2 Y:

ii) If Y is an L�convex set, then for j � j0; T jw and V belong to BLC(�;�CMk)

with C = Y � Z:

Notice that if Y � O! is a compact set, then Y � [kj=0Oj for some k; so

the above theorem applies to any compact set Y with Y � O!:

Proof. We prove these results by an inductive process.

Let Y � O0 be a compact set and w 2 BLS(�;M): Then for every x 2 Y

there exists an open ball Ux and a closed ball Bx; both centered at x, having the

same radius, and contained in O0: This means that for (�; z) 2 Bx�Z; G(�; z) �

int(�(�; z)) holds. Thus we may use Theorem 5 with Bx � Z as the compact

L�convex set to see that there exists a j0(x) such that T jw 2 BL(�;M0) for

all j � j0(x); on Bx � Z; where M0 = K + ;  is an arbitrarily small positive

constant, and K is as given in the quoted theorem (notice that, since Bx � Z

is a convex set, by Remark 2, �C = 1 in this case): Since Y is a compact set it

may be covered by a collection of balls fUxgx2Y 0 ; where Y 0 is some �nite subset

of Y: Hence, j0 = maxfj0(x) : x 2 Y 0g and the Lebesgue number " (see [3])

associated to fUxgx2Y 0 satisfy the conditions required in part i) for compact

subsets of O0.

Assume now that part i) has been proven for compact subsets of [k�1j=0Oj ;

k� 1 � 0; for a Lipschitz constant Mk�1; assume that Y is a compact subset of

[kj=0Oj ; and let w 2 BLS(�;M). Then we can apply our inductive hypothesis

to the compact set Y1 := Y �Ok � [k�1j=0Oj : Let j1;0 and "1 be the integer and
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radius given in part i) for the compact set Y1 and the function w:

Next, consider the compact set Y2 = Y � [�2Y1U(�; "1): Since Y2 � Ok,

we know that H := G(Y2) � Ok�1; and by upper hemi-continuity of G; H is

a compact set (see Hildenbrand [11]). We may also apply to H our inductive

hypothesis. Let j2;0 and "2 be the integer and radius given in part i) for H and

w.

We want to use Lemma 3 to obtain (local) Lipschitz constants for the func-

tions T jw on Y2�Z: In the present situation, however, we do not have a Lipschitz

constant on all the state space S:We only have such a Lipschitz constant locally

on H � Z; so we have to construct carefully neighbourhoods of the points of

Y2�Z which land, under GT jw for j large enough, on neighbourhoods of H�Z

where T j�1w 2 L(Mk�1); and then use Lemma 4.

Let x 2 Y2: By upper hemi-continuity of the correspondenceG� : BCS�X !

X, de�ned by G�(v; x) := Gv(x; Z) (see note 3), we get that there exists an

open ball Ux(V ) in the metric space BCS centered at V and an open ball

Ux; centered at x; in the metric space X; such that if (v; �) 2 Ux(V ) � Ux;

then Gv(�; z) � [�2HU(�; "22 ) for any z 2 Z: We may suppose, if necessary

reducing slightly the radius of Ux; that this also holds for (v; �) 2 Ux(V )�Bx;

where Bx is the closure of Ux: Let j3;0(x) be large enough to guarantee that

v := T jw 2 Ux(V ) if j � j3;0(x):

We shall prove that, for x and v as above and for any z 2 Z; Tv 2 L(Mk)

for a suitable Mk on the ball Bx;z := B((x; z); "(x)) with "(x) = minf "2
4K�

;

radius of Bxg: Let (�; !); (�0; !0) 2 Bx;z and assume that Tv(�; !) � Tv(�0; !0)
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holds. Since (v; �) 2 Ux(V ) � Bx, we may take y 2 Gv(�; !) such that y 2

U(�; "22 ) for some � 2 H: Hence B(y;
"2
2 ) � U(�; "2): Since � 2 L(K�), and

using that k (�; !)� (�0; !0) k� "2
2K�

; we may �nd y0 2 �(�0; !0) \ B(y; "22 ): For

j � j2;0 we know that v 2 L(Mk�1) on B(y; "22 ) � Z � U(�; "2) � Z: So, if

j � j(x) := maxfj3;0(x); j2;0g; Lemma 4 applies here if we set (x; z) = (�; !),

(x0; z0) = (�0; !0), and take the ball B(y; "22 ) as the ball B(y; �) . This shows

that T j+1w 2 L(Mk) with

Mk = KR(1 +K�) + maxf1;Mk�1g�KQ +Mk�1�K�

on Bx;z: Therefore T j+1w 2 Lloc(Mk) on B(x;
"(x)
2 ) � Z; j � j(x); and since

this last set is convex, Lemma 1 gives T j+1w 2 L(Mk) on B(x;
"(x)
2 ) � Z; for

x 2 Y2; and j � j(x):

Consider now the open cover of Y constituted by the family of balls

fU(x; r(x))gx2Y2[Y1 ; with r(x) =
"(x)

2
for x 2 Y2 and r(x) = "1 for x 2 Y1:

Let fU(x; r(x))gx 2Y 0 be a subcover of Y , with Y 0 some �nite subset of Y; and let

" be a Lebesgue number associated to this cover and j0 = maxfj1;0;maxfj(x) :

x 2 Y 0 \ Y2gg+ 1:

Then, if j � j0, T jw 2 BL(�;Mk) on cylinder sets B(x; ")�Z; x 2 Y; which

completes the inductive argument. From this it follows that V 2 BL(�;Mk) on

such cylinders.

We now prove part ii). Notice �rst that C is an L�convex set. To check this,
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if f(Y ) � Rn is a convex bilipschitz image of Y; then F (C) = f(Y ) � Z; with

F (x; z) = (f(x); z); is a convex bilipschitz deformation of C: Moreover, part i)

shows that T jw; j � j0 and V belong to BLlocC (Mk); and then, by Lemma 1, we

get that these functions are also in BLC(�CMk):

4 Numerical analysis

In this section we describe an algorithm for the numerical computation of the

value function V on C = Y � Z � S; where Y � O! is a compact L�convex

subset of X that supports the optimal policy (see Assumption V II below) and

Z is a compact convex subset of Rm. In this situation, C is also compact and

L�convex.

In order to obtain a rate of convergence for the algorithm we add to the list

of assumptions of the previous section the following:

Assumption V II : G(C) � Y:

This assumption means that in order to make the numerical analysis we

must consider a part of the phase space large enough to support the optimal

policy correspondence: Assumption V II gives by successive iteration G
k
(C) �

C (recall that G(x) = G(x;Z)).

We know by the previous section (Theorem 8) that V 2 LC(KC), where KC

is a positive constant and that if w 2 BLS(�;M) then there exists a k0 and a

�0 > 0 such that, for k � k0; T
kw 2 L(KC) on cylinders B(x; �0) � Z; x 2 Y .

In order to obtain a numerical approximation of V on C we discretize the set
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of points where V is to be approximated by choosing a ��net N� of C with

� < �0, i.e, a subset of C such that for any c 2 C there exists some c0 2 N�

with d(c; c0) � �: The compactness of C ensures that N� can be taken �nite.

Analogously we discretize each �(x; z), (x; z) 2 N�; through �=4�nets ��=4(x; z),

which allows us to discretize the Bellman operator.

The set of real functions on N� will be denoted by F�. Notice that if F�

is endowed with the topology of the supremum norm, then any w 2 F� is

a continuous function. According to some rule we de�ne a Borel measurable

mapping � : C ! N� which �xes a vertex �(x) 2 N� for each x 2 C such

that �(x) and x always belong to a common simplex t 2 T�. This ensures

k x� �(x) k� �.

We shall write ew for the piecewise constant extension to C of a function

w 2 F�, de�ned as ew(c) = w(�(c)) for all c 2 C.
The discretized Bellman operator is de�ned on F� by

T�(w(x; z)) = max
y2��=4(x;z)

fR(x; y; z) + �
Z ew(y; �)Q(z; d�)g; (x; z) 2 N�: (8)

It is easy to see that T� satis�es Blackwell�s conditions (see Stokey et al. [19],

Chapter 3) so T� is a contractive operator, with contraction factor �, on the

space F� endowed with the supremum norm (which will be denoted by k � k�).

Since N� is a compact set, it is a complete metric space. Therefore F� is a

complete metric space, which means that, for w0 2 F�; the iterates T k� (w0)

converge to the unique �xed point V� 2 F� of T�. Observe that ew(y; �) is a
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piecewise constant, and it takes constant values on the sets ty(�) := fz 2 Z :

�(y; z) = �(y; �)g (see note 4). These are Borel measurable sets for all y 2 Y

and � 2 Z and, given y 2 X, there is, by compactness of C, a �nite collection

of them Cy := fty(�) : � 2 Zg, so that the integral in (8) may be expressed as

the �nite sum X
ty(�)2Cy

ew(y; �)Q(z; ty(�)):
We shall assume that the probability distributions Q(z; �); (x; z) 2 N�, are

known, or that they can be approximated numerically with arbitrary accuracy.

Therefore, the action of the discretized operator T� and its iterates T k� can easily

be programmed in the form of a computer code, and the �xed point V� can be

numerically approximated in this way. The next theorem shows that this also

allows us to compute the �xed point V of the Bellman operator T (see de�nition

in expression (3)) with arbitrary accuracy on the space C.

Theorem 9 There exists a constant eK such that, for any su¢ ciently small �,

j V (x; z)� V�(x; z) j< eK� (9)

holds for every (x; z) 2 N�. Moreover

j V (x; z)� V�(�(x; z)) j< ( eK +KC)� (10)

holds for any (x; z) 2 C.

Proof. Let v0 2 BLS(M) for some constantM (in practice we may take v0 = 0)
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and let vk = T kv0: We know that there exists a k0 such that, if k � k0; then

vk 2 L(KC) on any cylinder B(x; �0) � Z with x 2 Y and with a su¢ ciently

small radius �0: Set w0 = vk0 and wk = T
kw0: Then if � < �0=2,

j wk(c)� wk(�(c)) j< KC� (11)

holds for all c 2 U�=2(Y )� Z :=
[
x2Y

U(x; �=2)� Z and for all k � 0:

Let us assume the �rst assertion proven for � < �0=2. Using that, for (x; z) 2

C, j V (x; z)�V (�(x; z)) j< KC� holds if � < �0=2 and that, by our assumption,

j V (�(x; z))�V�(�(x; z)) j< eK� holds, we get (10). This shows that if the value
function can be approximated with arbitrary accuracy on the grid N�, then this

also can be accomplished on the whole domain C. Notice that the Lipschitz

regularity of V on C plays here a determining role.

We now prove the �rst assertion in the theorem for � < �0=2. Let (x; z) 2 N�

with � < �0=2 and let k � k0. Then, for some y 2 �(x; z),

Twk(x; z) = R(x; y; z) + �

Z
wk(y; �)Q(z; d�): (12)

Notice that, by Assumption V II; G�(V;C) = G(C) � Y (see Lemma 6 part

i for the de�nition of G�). By the upper hemicontinuity of G� (see Lemma 6

part i) we know that there exists an open ball U(V ) in the metric space BCS

such that G�(U(V ) � C) � U�=4(Y ) :=
[
x2Y

U(x; �4 ): We can assume that k is

large enough so that T kw0 = wk 2 U(V ): Therefore the maximizing y occurring

in expression (12) belongs to U�=4(Y ); and then (y; �) 2 U�=4(Y ) � Z for any
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� 2 Z: This, the de�nitions of T and T�, and (11) give

Twk(x; z) = R(x; y; z) + �

Z
wk(y; �)Q(z; d�)

� sup
y2�(x;z)

fR(x; y; z) + �
X

ty(�)2Cy

ewk(y; �)Q(z; ty(�))g �KC�

� sup
y2��=4(x;z)

fR(x; y; z) + �
X

ty(�)2Cy

ewk(y; �)Q(z; ty(�))g �KC�

= T�(wk(x; z))�KC�:

Take y� 2 ��=4(x; z) with d(y; y�) < �=4, so that y� 2 U�=2(Y ): Then

T�(wk(x; z)) � R(x; y�; z) + �
X

ty� (�)2Cy�
ewk(y�; �)Q(z; ty�(�))

� R(x; y�; z) + �

Z
wk(y

�; �)Q(z; d�)�KC�

� R(x; y�; z) + �

Z
wk(y; �)Q(z; d�)� 2KC�

� R(x; y; z) + �

Z
wk(y; �)Q(z; d�)� (2KC +KR)�

= T (wk(x; z))� (2KC +KR)�:

From these inequalities we get

j Twk(x; z)� T�wk(x; z) j� (KR + 2KC)�;

and for functions w 2 fwkgk�0 on N�,

k Tw � T�w k�� (KR + 2KC)�
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(recall that k � k�denotes the supremum norm in F�).

Therefore we have for k > 0

k T k� w0 � wk k��k T�(T k�1� w0)� T�wk�1 k� (13)

+ k T�wk�1 � Twk�1 k�� � k T k�1� w0 � wk�1 k� +(KR + 2KC)�:

Let yk be the solution sequence, with initial condition y0 = 0, of the �rst order

di¤erence equation

yk+1 = (KR + 2KC)� + �yk:

Under the convention that T 0� is the identity, k T 0� w0 � w0 k�= 0 = y0, and if

k T i� w0 � wi k� � yi holds for all i 2 f0; 1; :::; k � 1g, then, by (13)

k T k� w0 � wk k�� (KR + 2KC)� + � k T k�1� w0 � wk�1 k�

� (KR + 2KC)� + �yk�1 = yk:

Therefore, 0 �k T k� w0 � wk k�� yk holds for all k 2 N. Since 0 < � < 1; the

sequence yk must converge to the equilibrium value of the di¤erence equation,

which is given by

ye = (1� �)�1(KR + 2KC)�:

We then may �nd a k1 such that j ye � yk j< � for k > k1. For such values of k

we have

0 �k T k� w0 � wk k�� yk � ((1� �)�1(KR + 2KC) + 1)�:
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We are now ready to prove the theorem. Let k2 be large enough to ensure that

the inequalities

k V � wk k�� � and

k V� � T k� w0 k�� �

hold for k > k2, where here V is regarded as a function on N�. If k >

maxfk0; k1; k2g we get

k V � V� k��k V � wk k� + k T k� w0 � wk k� + k V� � T k� w0 k�

� ((1� �)�1(KR + 2KC) + 3)� = eK�:

5 Examples

All data in the examples below were generated using a Compaq AlphaServer

GS160 6/731 ALPHAWILDFIRE Computer, coded in standard FORTRAN 77.

5.1 Deterministic example

Example 10 Optimal exploitation of renewable resources. The case

of a concave growth function and convex returns.

It is assumed that a renewable resource is managed by a sole owner whose

objective is to maximize the present value of net revenues derived from the
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exploitation of the resource

max
fxt+1g1t=0

( 1X
t=0

�tR(f(xt)� xt+1) : 0 � xt+1 � f(xt); t = 0; 1:; 2:::
)
; (14)

where � 2 (0; 1) is a discount factor; xt is the total biomass at the beginning

of period t; R(ht) is the net revenue function of the sole owner of the resource,

where ht = f(xt) � xt+1 is the harvest in period t; and f(xt) is the growth

function of the biomass in period t.

The Bellman equation associated to (14) is in this case

V (x) = max
0�y�f(x)

fR(f(x)� y) + �V (y)g: (15)

As pointed out in Section 1, the presence of increasing marginal returns in the

harvest functions of some schooling species gives rise to nonconcave net revenue

functions. We have analyzed the case of the North Sea herring �shery taking into

account the presence of increasing marginal returns estimated in the literature

(Bjørndal and Conrad [2]). North Sea herring is a schooling species. This

species is interesting from an economic and biological point of view (Bjørndal

and Conrad [2]).

In order to solve the problem (14), we use parameters based on economic and

biological data for the period 1981-2001 (see Nøstbakken and Bjørndal [16] for

details on the parameter estimation). For these parameters, the growth function
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f(xt) and the net revenue function R(ht) are given by the following equations:

f(xt) = xt + 0:53xt(1� xt); (16)

R(ht) = 6:94ht � 2:544(ht)0:709: (17)

In renewable resources economics it is commonly assumed that the resource

is managed by a sole owner whose objective is to maximize the present value of

net revenues which is assumed to be concave due to the presence of decreasing

marginal returns. This problem can be solved through the standard techniques

of discounted dynamic programming theory. The convergence of the optimal

paths to an optimal steady state equilibrium is guaranteed for high discount

factor levels. When such an equilibrium is attained, the sole owner achieves a

stable stock level with a harvest �ow sustained ad in�nitum. However, due to

the presence of increasing marginal returns in the �shery under consideration

here, the net revenue function (17) is convex in the harvest, so the standard

assumptions of discounted dynamic programming fail in this setting. However,

we can apply our algorithm to solve the Bellman equation (15) with net revenue

function (17).

In �gs. 1 and 2 we show the value function solution of (15) and the asso-

ciated optimal policy correspondence respectively. In �g. 2 the optimal policy

dynamics is also plotted. Figure 2 reveals that the complex discontinuous op-

timal policy dynamics has one strongly attractive period-�ve cycle traced for

t = 2001 from the initial stock level x0 = 0:68. Thus, in contrast to the standard
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theory, there is not an optimal steady state equilibrium. Rather, the optimal

policy dynamics is cyclic. We obtain similar results for high discount factor lev-

els. Therefore, the presence of increasing marginal returns in this �shery leads

to conclusions dramatically di¤erent from those of the standard theory.

We can also observe in �gure 2 that after a big harvest in the �rst period

there are four periods of null harvest (free growth of the resource) due to the

fact that the optimal policy correspondence coincides with the growth function

of the resource at low stock levels x 2 [0; �x], with �x ' 0:453. As a consequence,

in this case the optimal policy turns out to be noninterior, while for x > �x, there

is a positive harvest for these resource levels. The set O0 in Theorem 8 where

all optimal choices are interior is in this case the open interval (�x; 1]. Therefore

the optimal solutions are eventually interior.

5.2 A stochastic example

Example 11 : Optimal exploitation of renewable resources with ran-

dom shocks

We analyze here Example 10 in a stochastic setting. Randomness enters

the problem through a multiplicative random shock which modi�es the law

of growth f , re�ecting, for instance, the action of a natural predator on the

resource. The intensity zt of the multiplicative shock at period t is described

by an i.i.d. stochastic process fzng where zn = 0; 5+ 0; 5z0n with z0n distributed

as a �(0:5; 0:5). Such distribution is plausible, for instance, for a logistic law

of growth of predators, since it is well known that logistic dynamics generates

29



an invariant and asymptotically stable measure with such a distribution (see

[1], Chapter 2). The output at period t corresponding to a resource level x is

given by ztf(x) so that the e¢ ciency of the predation ranges from 0% to 50%

destruction of the resource. The Bellman equation is written now

V (x; z) = max0�y�zf(x)fR(zf(x)� y) + �
R
Z
V (y; �)d�(�)g;

in which Z = [0:5; 1] is the support of the probability distribution � of zn.

Figure 3 shows the value function of the problem for a discount factor � =

0:95. In order to obtain a numerical simulation of the optimal policy dynamics

we generate 50 random shocks from a �(0:5; 0:5). The numerical analysis of

500 simulations reveals that the resource is preserved at low stock levels. In

particular, the interval that includes 95% of the resource stock observations

is (0; 0:261]. Further numerical experiments reveal that the resource becomes

extinct for discount factor levels � 2 [0:83; 0:94]. Therefore, in contrast to the

standard theory, the presence of nonconcavities in the return function combined

with the uncertainty on the growth function of the resource gives rise to the

extinction of the resource even for high discount factor levels. Notice that this

experiment is in concordance with the empirical evidence on the North Sea

herring �shery, which underwent a moratorium in 1977 and careful regulation

since 1977, facts that cannot be explained by the standard theory of dynamic

programming. However, the aim of this example is not to give a rigorous analysis

of the optimal exploitation of this species but to show the analytical capacity

of the numerical algorithm. Research in the �rst direction is in progress.
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6 Concluding remarks

In this paper we have completed an alternative theoretical framework which al-

lows us to analyze problems of stochastic dynamic programming with discount

in the presence of nonconcavities in the data of the problem. The mathematical

complexity inherent in the proofs is compensated by the wide applicability of

the results and by the amenability to numerical analysis of the algorithm derived

from this theory. This algorithm allows us to analyze numerically problems of

optimal exploitation of renewable resources in danger of collapse which are in-

tractable in the standard framework. This algorithm also allow us to explore

properties of the optimal policy correspondence related with nonconcavities of

the data of the problem, such as countably many points of discontinuity and

non-uniqueness following a systematic pattern; discontinuities in the form of

jumps upwards in the marginal value function, synchronized with the disconti-

nuities of the optimal policy correspondence; asymptotic cyclic behavior of the

optimal paths; existence of a threshold level beyond which there are harvests;

and existence of a threshold level below which the resource stock is in danger

of collapse even without harvesting. Notice that each of these phenomena is

an object of study itself that is potentially analyzable taking the results of this

paper as a starting point, and using the available tools of nonsmooth analysis.
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Notes

1.- It is su¢ cient to observe that DH((x;Z); (y; Z)) = d(x; y), where DH is

the Hausdor¤ metric

2.- The integral term �
R
v(y; �)Q(z; d�) of Bellman operator forces to use

the Lipschitz condition of v in each point of the form (y; �) for all � 2 Z: This

motivates the de�nition of the sets Ok.

3.- G�(v; x) = Gv(x;Z) = Gv � Z(x), and the upper hemi-continuity of Gv

and Z give that of G�:

4.- The mapping ty : Z ! Z may be thought as ty(�) = pr(��1(y; �)\(y�Z),

where pr is the projection of the �bre y � Z on Z, given by pr(y; z) = z.

Since v is a Borel measurable mapping, ��1(y; �) is a Borel set, and so it is

��1(y; �) \ (y � Z). Lastly, using that pr is a homeomorphism between the

metric spaces y � Z and Z, we see that ty(�) is a Borel set.
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Captions

Figure 1. Value function in Example 10 for a discount factor � = 0:83:

Figure 2. Optimal policy correspondence and optimal dynamics in Example

10 for a discount factor � = 0:83. Observe the optimal plan, convergent to the

atractive period-�ve cycle traced from the initial state x0 = 0:68.

Figure 3. Value function V (x; z) in Example 11 for a discount factor � = 0:95

with a multiplicative shock zt described by a stochastic i.i.d. process fzng where

zn = 0; 5 + 0; 5z
0
n with z

0
n distributed as a �(0:5; 0:5).
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