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Abstract

We show that if the return function, the technological constraints and

the transition function of a standard problem of stochastic dynamic pro-

gramming with discount satisfy Lipschitz regularity assumptions, then the

value function is Lipschitz regular.
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1 Introduction

The results of this paper stand for a class of dynamic optimization problems

with in�nite horizon and discount, in a stochastic setting, as described by Stokey,

Lucas and Prescott [29], chaps. 4, 9.

It is well known that, under topological assumptions (compactness and con-

tinuity) on the data of the problem (i.e., state space, return function and tech-

nological constraint correspondence), the existence, uniqueness and continuity

of the value function is guaranteed.

The theory of dynamic programming with discount proceeds by completing

the topological assumptions with a rather extensive block of assumptions, which

we call standard assumptions, including concavity, smoothness and monotonic-

ity of the data. Such assumptions guarantee the concavity, smoothness and nu-

merical computability of the value function and optimal policy correspondence.

In the non-random case they also guarantee the convergence of the optimal

paths to an equilibrium state, and if noninterior optimal paths are ruled out,

then a recursive computation of the optimal paths through Euler equations is

possible.

The examples in Section 4 show that all these nice properties, with exception

of the existence and continuity of the value function, fail to hold under small de-

partures from the standard assumptions. A variety of phenomena emerge there

related with nonconcavity of the objective function, as countably many points

of discontinuity and non-uniqueness, following a systematic pattern, in the opti-

mal policy correspondence; discontinuities in the form of jumps upwards in the
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marginal value function, synchronized with the discontinuities of the optimal

policy correspondence (Example 18); asymptotic cyclic behavior of the optimal

paths (Example 18). In these cases, not only do the properties derived from the

standard assumptions are hopelessly lost, but also the numerical computation

of the value function through Bellman operator iterates is not possible for states

out of the grid used for the discretization of the phase space, since no rate of

convergence can be derived from the standard theory for such states.

Is it possible to construct an alternative theoretical framework which does

not require the extensive list of standard assumptions? Can such theory give

useful information on some relevant problems that are intractable in the stan-

dard framework?

The aim of this paper is to give some partial answers to these questions. In

particular we show that if the data of the problem satisfy Lipschitz continu-

ous assumptions, then the value function is Lipschitz continuous (see Theorem

14). A �rst consequence of our result is that in that setting the value func-

tion and optimal policy correspondence are numerically computable (see Morán

and Maroto [26]), thus giving a theoretical basis to our examples above, and to

some numerical experiments that have recently raised interest in the literature

(Dawid and Kopel [11, 12]).

The most direct antecedent of this paper is the result of Bertsekas [3]. There,

in a setting of optimal stochastic control with a discrete state space for the ran-

dom shocks and admissible controls, it is proved that under Lipschitz assump-

tions on the data of the problem, the value function can be computed. If we
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ignore the di¤erent settings of the problems, the main contribution of our results

is that Bertsekas�method does not permit us to prove that the value function

is Lipschitz regular, which is the key step to the obtention of the rate of con-

vergence of the numerical algorithm for the computation of the value function

(Morán and Maroto [26]).

The Lipschitz continuity of the value function has been analyzed by Yue

[30, 31] in optimal control and optimal time control problems respectively. Mon-

trucchio [25] proves that the policy function is Lipschitz continuous under as-

sumptions of strong concavity.

Bardi and Capuzzo-Dolceta [2] proved that the value function is Lipschitz

continuous in in�nite horizon problems of optimal control with discount. This

result does not allow dependence of the admissible controls on the state of the

system, i.e., the existence of a technological constraint correspondence is ruled

out. Such correspondence plays a central role in the problem.

Relevant research regarding applications of the results in this paper is focused

on nonconcavity of the growth function of the resource in problems of optimal

exploitation of renewable resources (Clark [8]). Notice that these problems are

equivalent to optimal growth models with linear or strictly concave objective

functions and convex-concave production functions (Majumdar and Mitra [22,

23], Dechert and Nishimura [13], Le Van and Dana [21]). In this sense, the

results in this paper can also be applied to these economic problems.

A second �eld where the results of this paper �nd natural application is that

of dynamic optimization problems with convex objective functions. This case
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has been shown to be relevant in the exploitation of renewable resources. In

particular, there is empirical evidence in the literature about convex objective

functions in �sheries management (Bj;rndal [5], Bj;rndal and Conrad [6]). See

also Dasgupta and Mäler [10] for a recent overview on nonconvex ecosystems,

and Dawid and Kopel [11, 12] for a numerical analysis of a renewable resource

subject to a convex objective function. The case of a convex objective function

is also relevant in capital accumulation models of the �rm where the revenue is

a convex function of the capital stock (Hartl and Kort [15]). See also Hartl and

Kort [16] for capital accumulation models where the revenue is a convex-concave

function of the capital stock.

Lastly, there are relevant economic problems that may be treated in the

Lipschitz setting. See Arrow et al. [1], Brian [7], and Heal [17] for recent

overviews on economic problems related to nonconcavities. See also references

in Example (18).

2 Preliminaries

2.1 The optimization problem

We describe the stochastic dynamic optimization problem we deal with. Let

(X;X ) be a measurable space with X � Rn and let X be the ��algebra of

Borel subsets of X. The space X is assumed to be the domain of an endogenous

state variable x, and Z � Rm endowed with the ��algebra Bm of Borel subsets

of Z is the domain of a sequence z0; z1; z2; ::: of exogenous random shocks.
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The state of the system at time t is therefore described by a vector (xt; zt)

ranging in the set S := X � Z: As a topological space, S is endowed with

the product topology, and as a measure space it is endowed with the product

��algebra. The technological constraints of the problem are represented by a

correspondence � : S ! X which speci�es the set �(xt; zt) of feasible states

xt+1: We shall write 
 for the graph of �; and consider in 
 the topology and

��algebra inherited from the product space X �X � Z.

Let the value z0 of the �rst random shock be known, and for t � 1 assume

that the sequence of random variables zt are a Markov stochastic process with

stationary transition function Q; which for z 2 Z ; A in the ��algebra Bm of

Borel subsets of Rm and t � 1, speci�es the probability Q(z;A) that zt 2 A

conditional to zt�1 = z: This de�nes in a standard way, for z0 2 Z and t � 1, the

probability measure �t(z0; �) on the t�fold product space Zt = Z � Z � :::� Z

which speci�es the (conditional to z0) probabilities �t(z0; A) that the sequence

zt := (z1; z2; :::; zt) of �rst t random shocks belongs to the sets A in the t-fold

product ��algebra Btm:

Given z0 2 Z and x0 2 X; a planner faces the problem of �nding an optimal

plan, that is, a constant �0 and a sequence �1; �2; �3; ::::of measurable functions

�t := Z
t ! X which solves the problem

supfR(x0; �0; z0) +
1X
t=1

�t
Z
Zt
R(�t�1(z

t�1); �t(z
t); zt)�

t(z0; dz
t)g; (1)

where the supremum is taken over all plans satisfying the technological con-

straints; � 2 (0; 1) is a discount factor; and R is the return function, de�ned on
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the graph 
 of the correspondence �; so R (xt; xt+1; zt) is the return at time t

if the state variable is set to be xt+1 at time t+ 1 and the current state of the

system is (xt; zt):

2.2 Notation and de�nitions

We now discuss the required conditions on the data in the above problem,

explore the scope of application of such conditions, and state several properties

derived from such conditions, that are to be used later on.

2.2.1 Lipschitz functions

Given a metric space (Y; d) and a point x 2 Y; we shall denote by U(x; r) and

B(x; r) respectively, the open and the closed ball centered at x with radius r:

Recall that a mapping between two metric spaces f : (Y; d)! (Y 0; d0) is said

to be a Lipschitz mapping if it satis�es d0(f(a); f(b)) � Kd(a; b) for all a; b 2 Y

and some constant K. We shall write f 2 L(K) for such mapping (or LA(K)

if we want to make explicit some subset A � Y where the Lipschitz condition

holds for f restricted to A). The function f is said to be locally Lipschitz on Y

if for every x 2 Y there exists a constant K and an open ball U(x; "); " > 0;

such that f 2 L(K) on U(x; "); and we write f 2 Lloc(K) ( LlocA (K)) if such

condition holds on Y (for f restricted to A � Y ). A function v will be said to

belong to BLY (�;K) (BLlocY (�;K)) if v 2 LY (K) (LlocY (K)) and it is bounded

by � (in the supremum norm) on Y .

De�nition 1 : We call L�convex a subset C � Rp if it is a bilipschitz image
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of a convex set.

The key property of L�convex sets is that functions which are locally Lip-

schitz on them, are also globally Lipschitz. The following lemma can be easily

proved

Lemma 2 : Let C � S � Rp be a L�convex set with f(C) convex and f

bilipschitz, and let v:S ! R with v 2 LlocC (K). Then v 2 LC(�CK) with

�C = Kf�1Kf ; (2)

where Kf and Kf�1 denote respectively the Lipschitz constants of f and f�1:

Remark 3 : If C is convex then we can set f = id; which shows �C = 1: It is

easy to see that in any case �C � 1 (see note 1). The case p = 1 does not have

interest, since a L�convex subset of R is an interval.

2.2.2 Correspondences and Hausdor¤ metric

Given a metric space (Y; d) and a subset A � Y , we denote by [A]� the �-

parallel body of A, that is, [A]� = [x2AB(x; �): For compact non-empty sub-

sets A;B � Y we de�ne dH(A;B) = minf" : B � [A]"g; and DH(A;B) =

maxfdH(A;B); dH(B;A)g: With this de�nition DH is a metric on the set HY

of compact non-empty subsets of Y . DH is known in the literature as the

Hausdor¤ metric.

The results in this paper depend on the following quali�cation of continuity

of a correspondence.
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De�nition 4 : Let � : X ! Y be a correspondence between metric spaces

(X; d) and (Y; d0). We say that � is topologically continuous at x if it is a com-

pact non-empty valued correspondence, continuous at x and DH(@�(x); @�(y))!

0 as y ! x, where @� denotes the boundary of �. � is said to be topologically

continuous if it is topologically continuous at all x 2 X:

The topologically continuous correspondences most frequently used in the

literature are compact, convex valued continuous correspondences. Indeed, it

can be shown that compact and convex valued correspondences are topologically

continuous.

The following lemma states the property of the type of correspondences used

in the proof of the main result.

Lemma 5 : Let (X; d) and (Y; d0) be metric spaces and let � : X ! Y be a

correspondence topologically continuous at x 2 X. Then

i) For any y 2 int(�(x)); there exists an open neighbourhood U of x and an

open neighbourhood U 0 of y such that U 0 � int(�(z)) for all z 2 U .

ii) (Mutual factibility condition) If G : X ! Y is a compact valued u.h.c

correspondence such that G(x) � int(�(x)); then there exists an open neigh-

bourhood U of x such that G(z) � int(�(x)) and G(x) � int(�(z)) hold for any

z 2 U:

Proof. i) Let � = d0(y; @�(x)): We know that � > 0 because y =2 @(�(x)):

By lower hemi-continuity of �, for a su¢ ciently small " and for any z with

d(z; x) < "; there exists z0 2 �(z) with d0(z0; y) < �=2: By topological continuity
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of �; we also may assume that DH(@�(x); @�(z)) < �=2 holds if d(z; x) < ".

In this situation B(y; �=2) � int(�(z)) must hold. To check this, assume �rst

that B(y; �=2) \ �(z)c 6= ;: Then B(y; �=2) \ @�(z) 6= ; since we know that

z0 2 B(y; �=2)\�(z) 6= ; (see note 2). Let z00 2 @�(z) with d0(y; z00) � �=2 and

let z000 2 @�(x) with d0(z00; z000) < �=2: We get the contradiction d0(y; z000) < �:

This proves that B(y; �=2) � �(z) hold. Since we have already proved that

B(y; �=2) \ @�(z) 6= ; cannot hold, this shows that if d(z; x) < ", then

U(y; �=2) � B(y; �=2) � int(�(z)):

ii) By upper hemicontinuity of G there exists an open neighbourhood U 0 of

x such that, for z 2 U 0; G(z) � [G(x)]"; with " < dH(G(x); @�(x)): By the

condition imposed on "; [G(x)]" \ @�(x) = ; holds, so G(z) � int(�(x)):

By part i), for any y 2 G(x) there exists an open neighbourhood Uy of x

such that if z 2 Uy then U(y; "(y)) � int(�(z)) holds for a su¢ ciently small

positive "(y): By compactness we may �nd a cover fU(y0; "(y0))gy02Y 0 of G(x);

where Y 0 � Y is a �nite set. Let U = U 0 \y02Y 0 Uy0 , let z 2 U and let y 2 G(x).

Since z 2 U 0; G(z) � int(�(x)) holds, and as y 2 U(y0; "(y0)) for some y0 2 Y

and z 2 Uy0 we get y 2 U(y0; "(y0)) � int(�(z)); so G(x) � int(�(z)).

The Hausdor¤metric gives also sense to the following de�nition, which allows

us to introduce a second (metric) quali�cation of continuous correspondences

De�nition 6 : Let � be a compact non-empty valued correspondence from the

metric space (Y; d) to the metric space (Y 0; d0): Then we write � 2 L(K) if

�H 2 L(K); so DH(�(x);�(y)) � Kd(x; y); x; y 2 Y:

Lipschitz correspondences arise in problems of optimal economic growth
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and exploitation of renewable resources, with technological constraints given

by �(x) = fy : 0 � y � f(x)g where f(x) is a Lipschitz production function

(law of growth of the resource, in problems of exploitation of renewable re-

sources). It is easy to see that the Lipschitz constant of � coincides with that

of f (see note 3).

2.2.3 Lipschitz transition functions

We shall use a metric on the set MZ of Borel probability measures on the

domain Z of the random shocks. Notice that the measures Q(z; �) de�ned by

the transition function described above belong toMZ :We shall consider inMZ

the metric given by d�(�; �) = supfj
R
fd� �

R
fd� j: f 2 BLZ(�; 1)g; where

BLZ(�; 1) is the set of functions f : Z ! R such that f 2 LZ(1) and k f k� �

(with k � k the supremum norm). The metrics d� are equivalent metrics for

any (positive) value of �: The metric d1 is called Fortet-Mourier distance (see

Dudley [14]). If Z is a compact subset of Rm; it su¢ ces to take the supremum,

in the de�nition of the metric, over functions f 2 LZ(1): We shall denote this

metric by d(�; �):

These distances allows us to introduce the following Lipschitz condition in

the transition function Q of the Markov process which governs the random

shocks

De�nition 7 : We say that the transition function satis�es the Lipschitz condi-

tion for the constant KQ; and write Q 2 LZ(KQ) if the mapping Q(z) := Q(z; �)

from the metric space (Z; d), with d the Euclidean distance, to the metric space
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(MZ ; d�); with the constant � speci�ed later on (see (4)), satis�es Q 2 LZ(KQ):

The transition functions of many standard Markov processes satisfy the con-

dition Q 2 LZ(KQ): As an example, consider the class of Markov processes

de�ned by an initial random variable z0 in Rm and the stochastic di¤erence

equation zt+1 = g(zt; �t); with g : Z � Rp ! Z � Rm; f�tg an i.i.d. process

with �t 2 Rp; all t; and g Borel-measurable (see Stokey, Lucas and Prescott [29],

chap. 8). The transition function is here de�ned on the Borel subsets A � Z by

Q(z;A) = Pf� 2 Rp : g(z; �) 2 Ag: Among the Markov processes in this class

are AR and VAR models. The following proposition gives a simple su¢ cient

condition for these processes to satisfy Assumption IV below, which in turn

implies the convergence of the process to a unique invariant measure if the state

space Z is compact.

Proposition 8 : If the function g(�; �) : Z ! Z satis�es g(�; �) 2 LZ(K)

then Q 2 LZ(K): Furthermore, if K < 1 and Z is compact, given an arbitrary

probability distribution (inMZ) for the random variable z0; the probability dis-

tributions of the random variable fztg converge (at a exponential rate, in the

weak topology) to a unique invariant measure independent from z0:

Proof. Let z 2 Z: For a Borel sets A � Z we have Q(z;A) = Pf� : g(z; �) 2

Ag;where P is the invariant probability distribution of the process f�tg: This

means that, if gz : Z ! Z is the z�section of g de�ned by gz(�) = g(z; �);

then Q(z; �) is the image probability distribution of P under the mapping gz:

For � > 0, f 2 BLZ(�; 1) and z; z0 2 Z the change of variable formula (see
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Billingsley [4]) gives

j
Z
f(�)Q(z; d�)�

Z
f(�)Q(z0; d�) j=

= j
Z
f(g(z; �))� f(g(z

0
; �))dP (�) j�

�
Z
j f(g(z; �))� f(g(z0; �)) j dP (�) � K k z � z0 k;

where it has been used that f 2 LZ(1) and g(�; �) 2 LZ(K): This shows that

d�(Q(z; �); Q(z0; �)) � K k z � z0 k; and the �rst assertion is proven.

Assume now that Z is a compact set. Recall that, in this case,MZ endowed

with the metrics d(�; �) = supfj
R
fd� �

R
fd� j: f 2 LZ(1)g is a complete

metric space, and the convergence de�ned by the metrics d is equivalent to the

weak convergence. Let T � : MZ ! MZ be the adjoint operator associated

to the transition function Q(z; �), de�ned by T �(�)(A) =
R
Q(z;A)d�(�) for

� 2 MZ (see Stokey, Lucas and Prescott [29], chap. 8): We want to prove

that, for any � 2 MZ ; T
�k(�) ! � 2 MZ ; where the limiting measure � is

independent from �: We only need to prove that T � is a contracting mapping.

Given f 2 LZ(1) and �; �0 2MZ we have

j
Z
f(�)dT ��(�)�

Z
f(�)dT ��0(�) j=

= j
Z Z

f(�)Q(z; d�)d�(z)�
Z Z

f(�)Q(z; d�)d�0(z) j�

�
Z
j
Z
f(g(z; �))d�(z)�

Z
f(g(z; �))d�0(z) j dP (�) =

= K

Z
j
Z
K�1f(g(z; �))d�(z)�

Z
K�1f(g(z; �))d�0(z) j dP (�) �

� K

Z
d(�; �0)dP (�) � Kd(�; �0);

where it has been used that K�1f(g(�; �)) 2 LZ(1) if g(�; �) 2 LZ(K):This gives
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d(T ��; T ��0) � Kd(�; �0); as it was to be shown.

The following lemma, whose proof is elementary, shows the role played by

the requirement Q 2 LZ(KQ):

Lemma 9 : If the transition function satis�es Q 2 LZ(KQ); then, for z; z0 2 Z,

y 2 X; and v 2 BLy�Z(�;K), the following inequality holdsR
v(y; �)Q(z0; d�) �

R
v(y; �)Q(z; d�) +KQmaxf1;Kg k z � z0 k :

2.3 Assumptions

We are now ready to formulate our assumptions on the data X;Z;R;�; and Q:

Some straightforward consequences of these assumptions used later on are also

analyzed in the remainder of this section.

Assumption I: X is a closed subset of Rn and Z is a closed subset of Rm:

Assumption II: R is a real bounded function and R 2 L
(KR):

Assumption III: � is a topologically continuous correspondence and � 2

LS(K�).

Assumption IV : Q 2 LZ(KQ) with KQ� < 1:

In this paper we shall consider only the case of interior optimal paths (see

(10), in Theorem 14). We do not add this assumption to the list above because

from that list and the results in Theorem 14, it can be obtained the Lipschitz

continuity of the value function in the general case of eventually interior optimal

plans (See Morán and Maroto [27]). Thus the list above may be considered the

basic assumptions for the Lipschitz continuous dynamic programming setting.
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Remark 10 : Assumption IV embodies the case of i.i.d. random shocks if

we take Q(�; A) to be constant for each A 2 Bm: In this case KQ = 0; and

�KQ < 1 always holds. The deterministic version of the optimization problem

(1) is also embodied in our analysis if we think of Z as a singleton fz0g with

Q(z0; fz0g) = 1 and Q(z0; ;) = 0: In this case we also have KQ = 0: VAR

models zt = Azt+#t with �t i.i.d. also satisfy Assumption IV if the eigenvalues

of A are inside the unit ball, including VAR models with roots of the unity.

Remark 11 : In the most classical models of economic growth the marginal

utility of capital tends to in�nity when the capital tend to zero so the return

function fails to be a Lipschitz function on a neighbourhood of the origin. These

case can be treated in the above setting by considering compact subsets Y = X�U

which do not contain a small neighbourhood U of the origin. The high marginal

value on U imposes a fast optimal growth. Then the space Y � Z, where the

assumptions above hold, may be taken as the phase space of the problem. See

Examples 18 and 19 for cases in such situation.

A consequence of Assumption IV is that Q(z) = Q(z; �) is a continuous

mapping; so the transition function Q enjoys the Feller property (See Stokey,

Lucas and Prescott [29], chap.11).

Since X and Z are closed sets by Assumption I, so it is S; which, therefore,

is also a complete metric space. Let BCS(�) denote the set of real continuous

functions on S bounded in supremum norm by the constant �: Bellman operator
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T; de�ned by

T (v(x; z)) = supfR(x; y; z) + �
Z
v(y; �)Q(z; d�) : y 2 �(x; z)g; (3)

preserves the set BCS of real continuous bounded functions on S; i.e. T :

BCS ! BCS ; and it is a contractive operator with respect to the supremum

norm in BCS (see Stokey, Lucas and Prescott [29], chap. 9). It is easy to check

that if v 2 BCS(�) then Tv 2 BCS(k R k +��): Thus, under Assumptions

I � IV , setting

� =k R k (1� �)�1 (4)

we have T : BCS(�)! BCS(�):

We shall keep from now onwards the value of � given by (4). It follows from

the completeness of BCS(�) the existence of a unique V 2 BCS(�) such that

T (V ) = V:Moreover, if T k denotes the k�th iterate of T; then k T k(v)�V k! 0

for any v 2 BCS and V is the unique value function of the optimization problem

(1).

It is well known that the optimal policy correspondence G : S ! X; given

by

G(x; z) = fy 2 �(x; z) : V (x; z) = R(x; y; z) + �
R
V (y; �)Q(z; d�)g,

is a compact valued and u.h.c correspondence. For each v 2 BCS a maxi-

mizing correspondence Gv may be de�ned by

Gv(x; z) = fy 2 �(x; z) : Tv(x; z) = R(x; y; z) + �
R
v(y; �)Q(z; d�)g.
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Observe that, as a consequence of Theorem of Maximum (see Stokey, Lucas

and Prescott [29], Theorem 3.6), Gv is a u.h.c. and compact valued correspon-

dence.

3 Lipschitz regularity of the value function

We �rst obtain an upper bound for the rate of growth of Lipschitz constants

under Bellman operator T (see de�nition in expression (3)).

The following simple Lemma states a property of Lipschitz correspondences

used in Lemma 13.

Lemma 12 : Let � : (Y; d) ! (Y 0; d0) be a Lipschitz correspondence with

� 2 LY (K): If x1; x2 2 Y and y 2 �(x1) then there exists y0 2 �(x2) with

d0(y; y0) � Kd(x1; x2):

Proof. Assume on the contrary that for all y0 2 �(x2); d0(y; y0) > Kd(x1; x2)

holds: Then y =2 [�(x2)]"; for " = Kd(x1; x2); giving the contradiction

DH(�(x1);�(x2)) > Kd(x1; x2):

Lemma 13 : Let v 2 BCS and v 2 L(M0);M0 � 0: Then, under Assumptions

I� IV; Tv 2 L(M1) holds, withM1 = KR(1+K�)+maxf1;M0g�KQ+M0�K�:

Proof. Let (x; z); (x0; z0) 2 S: We may assume Tv(x; z) � Tv(x0; z0). Let y

2 Gv(x; z), so that it holds

Tv(x; z) = R(x; y; z) + �

Z
v(y; �)Q(z; d�): (5)
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Since y 2 �(x; z) and, by assumption III;

DH(�(x; z);�(x
0; z0)) � K� k (x; z)� (x0; z0) k;

we may �nd (see Lemma 12) some y0 2 �(x0; z0) with

k y � y0 k� K� k (x; z)� (x0; z0) k : (6)

Using Assumption II and (6) we get for the �rst summand in (5)

R(x; y; z) � R(x0; y0; z0) +KR k (x; y; z)� (x0; y0; z0) k�

� R(x0; y0; z0) +KR(k (x; z)� (x0; z0) k + k y � y0 k) �

� R(x0; y0; z0) +KR(1 +K�) k (x; z)� (x0; z0) k : (7)

For the second summand in (5) using that: v 2 LS(M0); (6); and Lemma 9 we

get

�

Z
v(y; �)Q(z; d�) � �

Z
(v(y0; �) +M0 k y � y0 k)Q(z; d�) �

� �

Z
v(y0; �)Q(z; d�) + �M0K� k (x; z)� (x0; z0) k �

� �

Z
v(y0; �)Q(z0; d�) + maxf1;M0gKQ� k z � z0 k +

+�M0K� k (x; z)� (x0; z0) k�

� �
Z
v(y0; �)Q(z0; d�) + �(maxf1;M0gKQ +M0K�) k (x; z)� (x0; z0) k : (8)

Using that Tv(x; z) � Tv(x0; z0), (7) and (8)

j Tv(x; z)� Tv(x0; z0) j= Tv(x; z)� Tv(x0; z0) �

� R(x0; y0; z0) + �

Z
v(y0; �)Q(z0; d�)� Tv(x0; z0) +M1 k (x; z)� (x0; z0) k :

Lastly, Using that y0 2 �(x0; z0) we obtain

18



j Tv(x; z)� Tv(x0; z0) j�M1 k (x; z)� (x0; z0) k :

This lemma shows that the Lipschitz constantsMk of the iterates T kv follow

the di¤erence equation

Mk = KR(1 +K�) + maxf1;Mk�1g�KQ +Mk�1�K�: (9)

The result to be proved in this section is the following

Theorem 14 : Let C � S be a compact set and assume that

G(x; z) � int(�(x; z)) for all (x; z) 2 C: (10)

Let Assumptions I� IV hold. Then V 2 LlocC (�;K); with K = maxf1;KR(1�

�KQ)
�1g: Let w 2 BLS(�;M0); for some given constant M0; and let 
 > 0.

Then there exists a j0(
) such that T jw 2 BLlocC (�;K + 
); all j > j0(
): If C

is an L�convex set, then V 2 BLC(�;�CK) and T jw 2 BLC(�;�C(K + 
));

all j > j0(
); with �C given by (2).

If we interpret the variable x as the stock level of some economic resource,

the assumption (10) means that neither the exhaustion of the resource nor a

null consumption will be optimal at any period. This is the relevant situation

in problems of economic growth, if the extinction of the economy is ruled out,

and in problems of exploitation of renewable resources, if the extinction of the

resource and the paralysis of the exploitation for a period is too costly.

In order to prove Theorem 14, we �rst ensure that the correspondence Gv

(see de�nition in Section 2.3) satis�es on C the condition required to G in the

statement of the above theorem if v is a small perturbation of V .

19



Lemma 15 : i) If BCS is endowed with the supremum norm topology and

BCS � S is endowed with the product topology, then the correspondence G� :

BCS � S ! X de�ned by G�(v; c) = Gv(c) is upper hemi-continuous.

ii) There exists an open ball U(V ); centered at V; of the normed space BCS ;

such that Gv(x; z) � int(�(x; z)) holds if (x; z) 2 C and v 2 U(V ).

Proof. i) By Theorem of Maximum, it is enough to check that h(v; x; y; z) :=

R(x; y; z)+�
R
v(y; �)Q(z; d�) is a continuous function which, in view of the con-

tinuity of R, reduces to check the continuity of the integral term. Let (vk; yk; zk)

2 BCS � S , all k; with (vk; yk; zk) ! (v; y; z) 2 BCS � S: We may write

j
Z
v(y; �)Q(z; d�)�

Z
vk(yk; �)Q(zk; d�) j�

� j
Z
v(y; �)Q(z; d�)�

Z
v(yk; �)Q(z; d�) j +

+ j
Z
v(yk; �)Q(z; d�)�

Z
v(yk; �)Q(zk; d�) j +

+ j
Z
v(yk; �)Q(zk; d�)�

Z
vk(yk; �)Q(zk; d�) j :

The third summand in the string tends to zero as k tends to in�nity because

vk ! v in the supremum norm; the second summand tends to zero because Q

enjoys Feller�s property; and the �rst summand tends to zero by Lebesgue theo-

rem of dominated convergence, since the sequence of functions v(yk; �) converges

to v(y; �) and k v(yk; �) k �k v k<1:

ii) Assume, by contradiction, that for all U(V ), all (x; z) 2 C and all v 2

U(V ), @�(x; z) \Gv(x; z) 6= ?. Then, there exists a sequence vk ! V and se-

quences f(xk; zk)g in C and fykg in X with yk 2 @�(xk; zk)\Gvk(xk; zk) 6= ?.

By compactness we may assume (xk; zk) ! (x; z) 2 C. Using that � is topo-

20



logically continuous, so DH(@�(xk; zk); @�(x; z)) ! 0; and yk 2 @�((xk; zk));

we see that d(yk; @�(x; z)) ! 0: This means that for all k there exists an

y�k 2 @�(x; z) such d(yk; y�k) ! 0. By compactness we may assume y�k ! y

2 @�(x; z); so we may assume yk ! y 2 @�(x; z). But this is a contradiction,

since from the upper hemi-continuity of G� and from (vk; xk; zk)! (V; x; z) it

follows y 2 G(x; z) � int(�(x; z)):

Next we state an elementary property that provides the basic tool for the

proof of Theorem 14.

Lemma 16 : Under Assumptions I � IV let v 2 BLS(�;M); and assume that

Tv(x; z) � Tv(x0; z0) holds, where (x0; z0); (x; z) 2 S are such that Gv(x; z) \

�(x0; z0) 6= ;: Then j Tv(x; z)� Tv(x0; z0) j� (KR +maxf1;Mg�KQ) k (x; z)�

(x0; z0) k :

Proof. Let y 2 Gv(x; z) \ �(x0; z0): We have

j Tv(x; z)� Tv(x0; z0) j= Tv(x; z)� Tv(x0; z0) =

= R(x; y; z) + �

Z
v(y; �)Q(z; d�)� Tv(x0; z0) �

� R(x0; y; z0) +KR k (x; z)� (x0; z0) k + �
Z
v(y; �)Q(z0; d�) +

+maxf1;Mg�KQ k z � z0 k �Tv(x0; z0) �

� (KR +maxf1;Mg�KQ) k (x; z)� (x0; z0) k;

where the �rst inequality holds because R 2 L
(KR) and using Lemma 9, and

the second inequality holds because y 2 �(x0; z0).

Using this lemma we �rst analyze the local action of T: This shall give a

recursive law for the Lipschitz constants of iterates under Bellman operator of
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functions in U(V ) which is as in (9) without the constant term K�KR and

the (potentially) growing term Mk�1�K�: The mutual factibility condition (see

Lemma 5 (ii)) guarantees that Lemma 16 can be applied to bounded Lipschitz

functions in U(V ).

Lemma 17 : Assume that v 2 U(V )\BLS(�;M) for some constant M; where

U(V ) is as in part ii) of Lemma 15 and let c 2 C: Then there exists an " > 0

such that Tv 2 BL(�;K) on U(c; "); with K = KR +maxf1;Mg�KQ:

Proof. By Lemma 15 we know that Gv(c) � int(�(c)) holds for c 2 C:

By Lemma 5 applied to the correspondences � and Gv; we know that there

exists an open ball U(c; ") such that if c0 2 U(c; "); then Gv(c0) � �(c) and

Gv(c) � �(c0) hold. If Tv(c) � Tv(c0); then Gv(c) � �(c0) and Lemma 16

give j Tv(c) � Tv(c0) j� K k c � c0 k; and we arrive at the same conclusion if

Tv(c) � Tv(c0) using then that Gv(c0) � �(c).

We have now all the ingredients needed in the proof of Theorem 14.

Proof. Let U(V ) be as in Lemma 15 and let w 2 BLS(�;M0) where M0

is some constant : Then, as T kw ! V; T k0�1w 2 U(V ) holds if k0 is large

enough. Hence T k0w 2 U(V ) \ BLS(�;Mk0); with Mk0 as given by Lemma

13. Notice that, since T is a contractive operator, U(V ) is invariant under T:

Reset M0 equal to the constant Mk0 , let c 2 C; and let U(c; "(c)) be an open ball

as that given by Lemma 17. We see that T k0+kw 2 BL(�;Mk) on U(c; "(c));

k = 1; 2; ::;with Mk following now the di¤erence equation

Mk = KR +maxf1;Mk�1g�KQ: (11)
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If K := KR(1 � �KQ)
�1 > 1 and M0 � 1; then M1 = KR + �KQ; and since

KR > 1 � �KQ; we get that M1 > 1: Therefore any solution of equation (11)

follows in turn, for k � 2; the di¤erence equation

Mk = KR +Mk�1�KQ: (12)

which converges to its unique equilibrium point K so, there is an integer k1(
)

such that

T k0+kw 2 U(V ) \BL(�;K + 
); k � k1(
) (13)

on U(c; "(c)): If K = 1 (so KR(1 � �KQ)
�1 � 1) then, whenever a solution

of (11) remains larger than 1; it follows the di¤erence equation (12); which

converges to its unique equilibrium point KR(1 � �KQ)
�1 � 1: If, for some

k; we have Mk � 1 (which necessarily occurs in a �nite number of steps if

KR(1 � �KQ)
�1 < 1, see note 4 ), then Mk+1 = KR + �KQ � 1; because now

KR � 1� �KQ: Thus (13) always holds.

Set j0(
) = k0 + k1(
): Then T jw 2 BLU(c;"(c))(�;K + 
) for j � j0(
);

which shows T jw 2 BLlocC (�;K+
); j � j0(
); and if C is a L�convex, T jw 2

BLC(�;�C(K + 
)); j � j0(
) by Lemma 2:

Since the set of functions BLU(c;"(c))(�;K + 
) is a closed set of functions

and T jw 2 BLU(c;"(c))(�;K+
); j � j0(
); we see that V 2 BLU(c;"(c))(�;K+


) (see note 5). This shows that V 2 LlocC (�;K + 
); and as 
 was ar-

bitrarily small, we get V 2 LlocC (�;K): If C is L�convex, Lemma 2 gives

V 2 LC(�;�CK):
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4 Examples

All data in the examples below were generated using a AXP-2100/AMP500

DIGITAL Computer, coded in standard FORTRAN 77.

4.1 Deterministic example

Example 18 An application of Theorem 14: Non-Concavity in Growth

Models

The optimization problem is

max
fxt+1g1t=0

( 1X
t=0

�tU(f(xt)� xt+1) : 0 � xt+1 � f(xt); t = 0; 1:; 2:::
)
; (14)

where � 2 (0; 1) is a discount factor; xt is the capital stock at period t;

U(ct) is the utility function of a private owner of a �rm or household, where

ct = f(xt) � xt+1 is the consumption at period t; and f(xt) is a production

function. Note that (14) is the classical problem of optimal growth in a one-

sector model.

The Bellman equation associated to (14) is in this case

V (x) = max
0�y�f(x)

fU(f(x)� y) + �V (y)g: (15)

We have analyzed the case of the utility function U(x) = x0:7 + x3 � x which

is increasing, concave for low consumption levels, and it possesses an interval of

convexity for high consumption levels. The numerical experiment shows that the

optimal behaviour implied by such utility is rather common at a microeconomic

level (see Rothenberg [28], and Arrow et al. [1], for theoretical justi�cation
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of nonconcave utility functions in microeconomic problems). It is cyclical: It

maintains low consumptions levels for some periods of time, and then makes a

large consumption. The production function considered is f(x) = 0:95x exp(1�

x): It is concave and with strictly positive marginal productivity in the interval

[0; xe] ; with f(xe) = xe = 1 + ln 0:95 < 1, which is the relevant domain of f

(see �g. 1-b).

In �gs. 1-a and 1-b we can see the value function solution of (15) and the as-

sociated optimal policy correspondence respectively. There are countably many

discontinuities in the optimal policy following a visible pattern synchronized

with jumps upwards in the marginal value of capital stock. In �g. 1-b the

production function is also plotted. There is not extinction of the economy,

since all solutions are interior. In particular, the optimal capital stock satis�es

xt+1 � x0 ' 0; 03 if xt � x0. Since xt+1 > xt if xt � x0; Theorem 14 applies to

this example taking Y = [x; 1]; with 0 < x � x0; as state space of the problem

(see Remark 11). Fig. 1-b reveals that one strongly attractive period-six cy-

cle, supports the long run behavior of the optimal paths. Research in progress

is addressed to the analytical characterization of the threshold point, beyond

which the main part of the savings are expended in a large consumption.

4.2 An stochastic example

Example 19 : Stochastic Optimal Growth

We analyze here the Example (18) in a stochastic setting. Randomness

enters in the problem through a multiplicative random shock which modi�es the
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production function f , re�ecting, for instance, the action of a exogenous shock

which a¤ects negatively to the production function. The intensity zt of the

multiplicative shock at period t is described by a stochastic i.i.d. process fzng

where zn = 0; 5+0; 5z0n with z
0
n distributed as a �(0:5; 0:5). The output at period

t corresponding to a resource level x is given by ztf(x). The Bellman equation is

written now V (x; z) = max0�y�zf(x)fU(zf(x)� y) + �
R
Z
V (y; �)d�(�)g; where

Z = [0:5; 1] is the support of the probability distribution � of zn. Fig. 2

shows the value function of the problem. Notice that the value function is not a

Lipschitz function on X �Z since the marginal return of capital stock tends to

in�nity when the stock tends to zero. The numerical analysis reveals that there

exists a minimal capital stock x = 0:003 such that G(x) � x if x � x; so we may

use Y �Z; with Y := [x; 1]; as state space, as indicated in Remark 11. There is

no extinction in this economy, as it can be checked that all optimal paths from

a endogenous state x0 � x are always interior, so Theorem 14 applies to the set

Y � Z:

If we compare the value function in this stochastic example with that in the

deterministic case, Example 18, we can see that the uncertainty derived from

the random shock produces an smoothing e¤ect on the value function. Further

numerical analysis reveals discontinuities in the z�sections of the optimal policy

correspondence, which should cause non-smoothness of the value function.

26



5 Concluding remarks

There are three directions for the future extension of this research:

1) In Morán and Maroto [26], we analyze the convergence of the algorithm

for the numerical computation of the value function. The Lipschitz continuity

of the value function is the only assumption that we need in order to obtain a

rate O(�) of convergence of the numerical algorithm, where � is the diameter of

the discrete grid of points used for the computation.

2) The results in this paper for the case of interior optimal plans allow us

to prove the Lipschitz continuity of the value function for the case of eventually

interior optimal plans. This case is relevant to the area of optimal exploitation

of renewable resources where the existence of nonconcavities has been largely

admitted.

3) As a future perspective, the results in this paper allow us the use of pow-

erful tools of non-smooth analysis (Clarke [9]). In the same spirit, an incipient

development of a theory of dynamical systems with evolution law governed by

correspondences (Lasota and Myjak [19, 20]), closely related to fractal geom-

etry (Hutchinson [18]), open the perspective of the analysis of the long run

behaviour of optimal policies and asymptotic stability of dynamical equilibria if

nonuniqueness in the policy correspondence is allowed, so in the deterministic as

in the stochastic settings. For recent research on chaotic behaviour of optimal

paths, see also Majumdar et al. [24].
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Notes

1.- d(f(x); f(y)) � Kd(x; y); which shows that any Lipschitz constant for

f�1 must be larger than K�1: This shows that KfKf�1 � KK�1 = 1:

2.- The sets B(y; �2 ) \ adh(�(c)) and B(y;
�
2 ) \ �(c)

c are non-empty closed

sets whose union completes the connected set B(y; �2 ). We may write B(y;
�
2 )\

adh(�(c)) = (B(y; �2 ) \ �(c)) [ (B(y;
�
2 ) \ @(�(c))): If B(y;

�
2 ) \ @(�(c)) = ;

then (B(y; �2 ) \ adh(�(c)) \ (B(y;
�
2 ) \ �(c)

c) = ;; in contradiction with the

connectedness of B(y; �2 ):

3.- Let I = [0; a] and J = [0; b]: Then DH(I; J) = d(a; b): For the correspon-

dences described in the text we have �(x) = [0; f(x)]. Therefore, if f 2 L(K)

we have DH(�(x);�(y)) = d(f(x); f(y)) � Kd(x; y).

4.- If KR(1� �KQ)
�1 = 1 then Mk does not have to become smaller that 1

in a �nite number of steps but, for any 
 > 0; it becomes smaller than 1 + 
 in

a �nite number of steps, as required.

5.- Let vn ! v with vn 2 LU (K + 
): Then, given x; y 2 U and " > 0 there

exists an n such that d(vn(x); v(x)) � " and d(vn(y); v(y)) � ": Therefore, for

x; y 2 U;

d(v(x); v(y)) � 2"+ d(vn(x); vn(y)) � 2"+ (K + 
)d(x; y);

and, since " was arbitrary, we get v 2 LU (K + 
):
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